Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:07:25.907Z Has data issue: false hasContentIssue false

Nanoparticle–protein interactions: Water is the key

Published online by Cambridge University Press:  12 December 2014

Daniel F. Moyano
Affiliation:
Department of Chemistry, University of Massachusetts Amherst, USA; [email protected]
Moumita Ray
Affiliation:
Department of Chemistry, University of Massachusetts Amherst, USA; [email protected]
Vincent M. Rotello
Affiliation:
Department of Chemistry, University of Massachusetts Amherst, USA; [email protected]
Get access

Abstract

Nanoparticle (NP) surface properties define how engineered nanomaterials interact with proteins. In aqueous systems, these interactions are driven by the binding of water to NPs and proteins. Understanding the true nature of this NP–water interface and its involvement in the properties of nanomaterials is a fundamental challenge in nanotechnology. Here, we review recent studies on the involvement of water molecules in the interaction of NPs with proteins. We first address the thermodynamic aspects of the NP–protein interaction and the means by which solvation shells can alter the nature of this phenomenon. We then discuss how the chemical nature of the NP surface affects the adsorption of water molecules and how this adsorption can either favor or inhibit protein–NP interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Niemeyer, C.M., Angew. Chem. Int. Ed. 40, 4128 (2001).Google Scholar
Tang, R., Kim, C.S., Solfiell, D.J., Rana, S., Mout, R., Velázquez-Delgado, E.M., Chompoosor, A., Jeong, Y., Yan, B., Zhu, Z.-J., Kim, C., Hardy, J.A., Rotello, V.M., ACS Nano 7, 6667 (2013).CrossRefGoogle Scholar
Mcnaughton, B.R., Cronican, J.J., Thompson, D.B., Liu, D.R., Proc. Natl. Acad. Sci. U.S.A. 106, 6111 (2009).Google Scholar
Jain, K.K., Clin. Chim. Acta 358, 37 (2005).Google Scholar
Saha, K., Agasti, S.S., Kim, C., Li, X., Rotello, V.M., Chem. Rev. 112, 2739 (2012).CrossRefGoogle Scholar
Rana, S., Yeh, Y.-C., Rotello, V.M., Curr. Opin. Chem. Biol. 14, 828 (2010).CrossRefGoogle Scholar
Walkey, C.D., Chan, W.C.W., Chem. Soc. Rev. 41, 2780 (2012).CrossRefGoogle Scholar
You, C.-C., De, M., Rotello, V.M., Curr. Opin. Chem. Biol. 9, 639 (2005).CrossRefGoogle Scholar
De, M., Miranda, O.R., Rana, S., Rotello, V.M., Chem. Commun. 16, 2157 (2009).CrossRefGoogle Scholar
Moyano, D.F., Rotello, V.M., Langmuir 27, 10376 (2011).Google Scholar
You, C.-C., Agasti, S.S., De, M., Knapp, M.J., Rotello, V.M., J. Am. Chem. Soc. 128, 14612 (2006).Google Scholar
De, M., You, C.-C., Srivastava, S., Rotello, V.M., J. Am. Chem. Soc. 129, 10747 (2007).Google Scholar
Houk, K.N., Leach, A.G., Kim, S.P., Zhang, X., Angew. Chem. Int. Ed. 42, 4872 (2003).CrossRefGoogle Scholar
You, C.C., De, M., Han, G., Rotello, V.M., J. Am. Chem. Soc. 127, 12873 (2005).Google Scholar
Moyano, D.F., Rana, S., Bunz, U.H.F., Rotello, V.M., Faraday Discuss. 152, 33 (2011).CrossRefGoogle Scholar
Chen, K., Rana, S., Moyano, D.F., Xu, Y., Guo, X., Rotello, V.M., Nanoscale 6, 6492 (2014).Google Scholar
Gessner, A., Waicz, R., Lieske, A., Paulke, B.R., Mäder, K., Müller, R.H., Int. J. Pharm. 196, 245 (2000).Google Scholar
Ding, H.-M., Ma, Y.-Q., Biomaterials 35, 8703 (2014).Google Scholar
Zhu, Z.J., Posati, T., Moyano, D.F., Tang, R., Yan, B., Vachet, R.W., Rotello, V.M., Small 8, 2659 (2012).CrossRefGoogle ScholarPubMed
Shima, F., Akagi, T., Akashi, M., Biomater. Sci. 2, 1419 (2014).Google Scholar
Salvati, A., Pitek, A.S., Monopoli, M.P., Prapainop, K., Bombelli, F.B., Hristov, D.R., Kelly, P.M., Aberg, C., Mahon, E., Dawson, K.A., Nat. Nanotechnol. 8, 137 (2013).Google Scholar
Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A., McNeil, S.E., Adv. Drug Deliv. Rev. 61, 428 (2009).CrossRefGoogle Scholar
Jokerst, J.V., Lobovkina, T., Zare, R.N., Gambhir, S.S., Nanomedicine 6, 715 (2011).Google Scholar
You, C.-C., De, M., Rotello, V.M., Org. Lett. 7, 5685 (2005).CrossRefGoogle Scholar
Gombotz, W.R., Guanghui, W., Horbett, T.A., Hoffman, A.S., J. Biomed. Mater. Res. 25, 1547 (1991).Google Scholar
Reddy, S.T., van der Vlies, A.J., Simeoni, E., Angeli, V., Randolph, G.J., O’Neil, C.P., Lee, L.K., Swartz, M.A., Hubbell, J.A., Nat. Biotechnol. 25, 1159 (2007).Google Scholar
Cao, Z., Jiang, S., Nano Today 7, 404 (2012).CrossRefGoogle Scholar
Keefe, A.J., Jiang, S., Nat. Chem. 4, 59 (2012).Google Scholar
Chen, S., Zheng, J., Li, L., Jiang, S., J. Am. Chem. Soc. 127, 14473 (2005).Google Scholar
Moyano, D.F., Saha, K., Prakash, G., Yan, B., Kong, H., Yazdani, M., Rotello, V.M., ACS Nano 8, 6748 (2014).Google Scholar
Yang, W., Liu, S., Bai, T., Keefe, A., Zhang, L., Ella-Menye, J.-R., Li, Y., Jiang, S., Nano Today 9, 10 (2014).Google Scholar
Arvizo, R.R., Miranda, O.R., Moyano, D.F., Walden, C.A., Giri, K., Bhattacharya, R., Robertson, J.D., Rotello, V.M., Reid, J.M., Mukherjee, P., PLoS One 6, e24374 (2011).Google Scholar
Leng, C., Han, X., Shao, Q., Zhu, Y., Li, Y., Jiang, S., Chen, Z., J. Phys. Chem. C 118, 15840 (2014).CrossRefGoogle Scholar
Shao, Q., Jiang, S., J. Phys. Chem. B 118, 7630 (2014).CrossRefGoogle Scholar
Pillai, P.P., Huda, S., Kowalczyk, B., Grzybowski, B.A., J. Am. Chem. Soc. 135, 6392 (2013).CrossRefGoogle Scholar