Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T07:58:30.660Z Has data issue: false hasContentIssue false

Nanometer-Scale Laser Direct-Write Using Near-Field Optics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article summarizes research on laser-based processing and structuring of materials at the nanoscale using optical near-field schemes. Both apertureless and tapered fiber near-field scanning optical microscope probes can deliver highly confined irradiation at sufficiently high intensities to cause morphological and structural changes in materials at the nanometer level. The energy emitted by the probes and the absorption within the target material are predicted by carrying out calculations of the near-field electromagnetic distribution. The effects of shrinking laser beam dimensions compete with the energy diffusion into the target material. Experimental results have shown well-controlled subtractive material modification with minimum feature size in the neighborhood of 10 nm. Precise patterning can be achieved via laser-assisted chemical etching. Control of the nucleation of nanostructures via rapid melting and crystallization is demonstrated. The article concludes with an outlook to applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bäuerle, D., Laser Processing and Chemistry, 3rd ed. (Springer, Heidelberg, 2000).CrossRefGoogle Scholar
2.Pronko, P.P., Dutta, S.K., Squier, J., Rudd, J.V., Du, D., and Mourou, G., Opt. Commun. 114 (1995) p. 106.CrossRefGoogle Scholar
3.Saleh, B. and Teich, M., Fundamentals of Photonics (John Wiley and Sons, New York, 1991).CrossRefGoogle Scholar
4.Betzig, E., Trautman, J.K., Harris, T.D., Weiner, J.S., and Kostelak, R.L., Science 251 (1991) p. 1468.CrossRefGoogle Scholar
5.Pohl, D.W., Denk, W., and Lanz, M., Appl. Phys. Lett. 44 (1984) p. 651.CrossRefGoogle Scholar
6.Synge, E.H., Phil. Mag. 6 (1928) p. 356.CrossRefGoogle Scholar
7.Synge, E.H., Phil. Mag. 13 (1932) p. 297.CrossRefGoogle Scholar
8.Ash, E.A. and Nichols, G., Nature 237 (1972) p. 510.CrossRefGoogle Scholar
9.Lewis, A., Isaacson, M., Harootunian, A., and Murray, A., Ultramicroscopy 13 (1984) p. 227.CrossRefGoogle Scholar
10.Betzig, E. and Trautman, J.K., Science 257 (1992) p. 189.CrossRefGoogle Scholar
11.Wegscheider, S.S., Kirsch, A., Mlynek, J., and Krausch, G., Thin Solid Films 264 (1995) p. 264.CrossRefGoogle Scholar
12.Dutoit, B., Zeisel, D., Deckert, V., and Zenobi, R., J. Phys. Chem. B 101 (1997) p. 6955.CrossRefGoogle Scholar
13.Stöckle, R., Setz, P., Deckert, V., Lippert, T., Wokaun, A., and Zenobi, R., Anal. Chem. 73 (2001) p. 1399.CrossRefGoogle Scholar
14.Lieberman, K., Shani, Y., Melnik, I., Yoffe, S., and Sharon, Y., J. Microsc. 194 (1999) p. 537.CrossRefGoogle Scholar
15.Gorbunov, A.A. and Pompe, W., Phys. Status Sol. A 145 (1994) p. 333.CrossRefGoogle Scholar
16.Dickmann, K., Jersch, J., and Demming, F., Surf. Interf. Anal. 25 (1997) p. 500.3.0.CO;2-6>CrossRefGoogle Scholar
17.Jersch, J., Demming, F., and Dickmann, K., Appl. Phys. A 64 (1997) p. 29.CrossRefGoogle Scholar
18.Huang, S.M., Hong, M.H., Lu, Y.F., Lukyanchuk, B.S., Song, W.D., and Chong, T.C., J. Appl. Phys. 91 (2002) p. 3268.CrossRefGoogle Scholar
19.Lu, Y.F., Mai, Z.H., Qiu, G., and Chim, W.K., Appl. Phys. Lett. 75 (1999) p. 2359.CrossRefGoogle Scholar
20.Boneberg, J., Munzer, H.J., Tresp, M., Ochmann, M., and Leiderer, P., Appl. Phys. A 67 (1998) p. 381.CrossRefGoogle Scholar
21.Lu, Y.F., Hu, B., Mai, Z.H., Wang, W.J., Chim, W.K., and Chong, T.C., Jpn. J. Appl. Phys. 40 (2001) p. 4395.CrossRefGoogle Scholar
22.Huber, R., Koch, M., and Feldmann, J., Appl. Phys. Lett. 73 (1998) p. 2521.CrossRefGoogle Scholar
23.Chimmalgi, A., Choi, T.-Y., Grigoropoulos, C.P., and Komvopoulos, K., Appl. Phys. Lett. 82 (2003) p. 1146.CrossRefGoogle Scholar
24.Chimmalgi, A., Choi, T.-Y., Grigoropoulos, C.P., and Komvopoulos, K., J. Appl. Phys. 97 104319 (2005).CrossRefGoogle Scholar
25.Pistor, T.V., “Electromagnetic Simulation and Modeling with Applications in Lithography,” PhD thesis, University of California, Berkeley, 2001.Google Scholar
26.Ohtsu, M., Near-Field Nano/Atom Optics and Technology (Springer, Tokyo, 1998).CrossRefGoogle Scholar
27.Ukraintsev, V.A. and Yates, J.T., J. Appl. Phys. 80 (1996) p. 2561.CrossRefGoogle Scholar
28.Kawata, Y., Xu, C., and Denk, W., J. Appl. Phys. 85 (1999) p. 1294.CrossRefGoogle Scholar
29.Bachelot, R., H'Dhili, F., Barchiesi, D., Lerondel, G., Fikri, R., Royer, P., Landraud, N., Peretti, J., Chaput, F., Lampel, G., Boilot, J., and Lahlil, K., J. Appl. Phys. 94 (2003) p. 2060.CrossRefGoogle Scholar
30.Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., and Wolff, P.A., Nature 391 (1998) p. 667.CrossRefGoogle Scholar
31.Hwang, D.J., Chimmalgi, A., and Grigoropoulos, C.P., J. Appl. Phys. 99 044905 (2006).CrossRefGoogle Scholar
32.Schaffer, C.B., Brodeur, A., García, J.F., and Mazur, E., Opt. Lett. 26 (2001) p. 93.CrossRefGoogle Scholar
33.Müller, R. and Lienau, C., Appl. Phys. Lett. 76 (2000) p. 3367.CrossRefGoogle Scholar
34.Peng, C., Cheng, L., and Mansuripur, M., J. Appl. Phys. 82 (1997) p. 4183.CrossRefGoogle Scholar
35.Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takao, M., J. Appl. Phys. 69 (1991) p. 2849.CrossRefGoogle Scholar
36.Chimmalgi, A., Hwang, D.J., and Grigoropoulos, C.P., Nano Lett. 5 (2005) p. 1924.CrossRefGoogle Scholar
37.Lee, M., Moon, S., Hatano, M., Suzuki, K., and Grigoropoulos, C.P., J. Appl. Phys. 88 (2000) p. 4994.CrossRefGoogle Scholar
38.Stolk, P.A., Polman, A., and Sinke, W.C., Phys. Rev. B 47 (1993) p. 5.CrossRefGoogle Scholar
39.Lee, M., Moon, S., and Grigoropoulos, C.P., J. Cryst. Growth 226 (2001) p. 8.CrossRefGoogle Scholar
40.Chimmalgi, A., Hwang, D.J., and Grigoropoulos, C.P., presented at 2005 Conf. on Laser Ablation (COLA '05), J. Phys. D (2006) in press.Google Scholar
41.Wanke, M.C., Lehmann, O., Muller, K., Qingzhe, W., and Stuke, M., Science 275 (1997) p. 1284.CrossRefGoogle Scholar
42.Gilgen, H.H., Cacouris, T., Shaw, P.S., Krchnavek, R.R., and Osgood, R.M., Appl. Phys. B 42 (1987) p. 55.CrossRefGoogle Scholar
43.Hwang, D.J., “Pulsed Laser Processing of Electronic Materials in Micro/Nanoscale,” PhD dissertation, University of California, Berkeley, 2005.Google Scholar
44.Ibbs, K.G. and Osgood, R.M., eds., Laser Chemical Processing for Microelectronics (Cambridge University Press, Cambridge, UK, 1989).Google Scholar
45.Müllenborn, M., Dirac, H., and Petersen, J.W., Appl. Surf. Sci. 86 (1995) p. 568.CrossRefGoogle Scholar
46.Ehlrich, D.J., Appl. Surf. Sci. 69 (1993) p. 115.Google Scholar
47.Wysocki, G., Heitz, J., and Bäuerle, D., Appl. Phys. Lett. 84 (2004) p. 2025.CrossRefGoogle Scholar
48.Minne, S.C., Yaralioglu, G., Manalis, S.R., Adams, J.D., Zesch, J., Atalar, A., and Quate, C.F., Appl. Phys. Lett. 72 (1998) p. 2340.CrossRefGoogle Scholar
49.Vettiger, P., Brugger, J., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M., Rothuizen, H., Stutz, R., Widmer, R., and Binnig, G., Microelectron. Eng. 46 (1999) p. 11.CrossRefGoogle Scholar