Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:31:58.681Z Has data issue: false hasContentIssue false

Nanomaterials for the water-energy nexus

Published online by Cambridge University Press:  10 January 2019

Svetlana V. Boriskina
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, USA; [email protected]
Aikifa Raza
Affiliation:
Department of Mechanical and Materials Engineering, Masdar Institute, Khalifa University of Science and Technology, United Arab Emirates; [email protected]
TieJun Zhang
Affiliation:
Department of Mechanical and Materials Engineering, Masdar Institute, Khalifa University of Science and Technology, United Arab Emirates; [email protected]
Peng Wang
Affiliation:
King Abdullah University of Science and Technology, Saudi Arabia; [email protected]
Lin Zhou
Affiliation:
College of Engineering and Applied Sciences, Nanjing University, China; [email protected]
Jia Zhu
Affiliation:
College of Engineering and Applied Sciences, Nanjing University, China; [email protected]
Get access

Abstract

The water and energy sectors of an economy are inextricably linked. Energy is required in water production, distribution, and recycling, while water is often used for energy generation. In many geographical locations, the energy-water nexus is exacerbated by the shortage of both fresh water resources and energy generation infrastructure. New materials, including metamaterials, are now emerging to address the challenges of providing renewable energy and fresh water, especially to off-the-grid communities struggling with water shortages. Novel nanomaterials have fueled recent technology breakthroughs in solar water desalination, fog and dew collection, and cloud seeding. Materials for passive thermal management of buildings and individuals offer promising strategies to reduce the use of energy and water for heating and cooling. While many challenges remain, emerging materials and technologies improve sustainable management of water and energy resources.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mekonnen, M.M., Hoekstra, A.Y., Sci. Adv. 2, e1500323 (2016).CrossRefGoogle Scholar
Elimelech, M., Phillip, W.A., Science 333, 712 (2011).CrossRefGoogle Scholar
Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J., Mayes, A.M., Nature 452, 301 (2008).CrossRefGoogle Scholar
Globalsolaratlas.info.Google Scholar
Tiwari, G.N., Singh, H.N., Tripathi, R., Sol. Energy 75, 367 (2003).CrossRefGoogle Scholar
Weinstein, L.A., Loomis, J., Bhatia, B., Bierman, D.M., Wang, E.N., Chen, G., Chem. Rev. 115, acs.chemrev.5b00397 (2015).CrossRefGoogle Scholar
Boriskina, S.V., Green, M.A., Catchpole, K., Yablonovitch, E., Beard, M.C., Okada, Y., Lany, S., Gershon, T., Zakutayev, A., Tahersima, M.H., Sorger, V.J., Naughton, M.J., Kempa, K., Dagenais, M., Yao, Y., Xu, L., Sheng, X., Bronstein, N.D., Rogers, J., Alivisatos, A.P., Nuzzo, R.G., Gordon, J.M., Wu, D.M., Wisser, M.D., Salleo, A., Dionne, J., Bermel, P., Greffet, J.-J., Celanovic, I., Soljacic, M., Manor, A., Rotschild, C., Raman, A., Zhu, L., Fan, S., Chen, G., J. Opt. 18, 073004 (2016).CrossRefGoogle Scholar
Bermel, P., Yazawa, K., Gray, J.L., Xu, X., Shakouri, A., Energy Environ. Sci. 3, 2123 (2016).Google Scholar
Zhu, L., Raman, A.P., Fan, S., Proc. Natl. Acad. Sci. U.S.A. 112, 12282 (2015).CrossRefGoogle Scholar
Raman, A.P., Anoma, M.A., Zhu, L., Rephaeli, E., Fan, S., Nature 515, 540 (2014).CrossRefGoogle Scholar
Granqvist, C.G., J. Appl. Phys. 52, 4205 (1981).CrossRefGoogle Scholar
Eriksson, T.S., Granqvist, C.G., Appl. Opt. 21, 4381 (1982).CrossRefGoogle Scholar
Zhai, Y., Ma, Y., David, S.N., Zhao, D., Lou, R., Tan, G., Yang, R., Yin, X., Science 355, 1062 (2017).CrossRefGoogle Scholar
Kou, J., Jurado, Z., Chen, Z., Fan, S., Minnich, A.J., ACS Photonics 4, 626 (2017).CrossRefGoogle Scholar
Tong, J.K., Huang, X., Boriskina, S.V., Loomis, J., Xu, Y., Chen, G., ACS Photonics 2, 769 (2015).CrossRefGoogle Scholar
Beysens, D., Muselli, M., Milimouk, I., Ohayon, C., Berkowicz, S., Soyeux, E., Mileta, M., Ortega, P., Energy 31, 2303 (2006).CrossRefGoogle Scholar
Nilsson, T., Sol. Energy Mater. Sol. Cells 40, 23 (1996).CrossRefGoogle Scholar
Guan, H., Sebben, M., Bennett, J., Urban Water J . 11, 175 (2014).CrossRefGoogle Scholar
Al-Nimr, M.A., Haddad, O., Renew. Energy 13, 323 (1998).CrossRefGoogle Scholar
Yu, F., Zhou, H., Huang, Y., Sun, J., Qin, F., Bao, J., Goddard, W.A., Chen, S., Ren, Z., Nat. Commun. 9, 2551 (2018).CrossRefGoogle Scholar
Jin, Y., Chang, J., Shi, Y., Shi, L., Hong, S., Wang, P., J. Mater. Chem. A (2018), doi:10.1039/C8TA00187A.Google Scholar
Chen, Y., Zheng, Y., Nanoscale 6, 7703 (2014).CrossRefGoogle Scholar
Tai, Y., Liang, H., Zaki, A., El Hadri, N., Abshaev, A.M., Huchunaev, B.M., Griffiths, S., Jouiad, M., Zou, L., ACS Nano 11, 12318 (2017).CrossRefGoogle Scholar
Chen, W., Chen, S., Liang, T., Zhang, Q., Fan, Z., Yin, H., Huang, K.-W., Zhang, X., Lai, Z., Sheng, P., Nat. Nanotechnol. 13, 345 (2018).CrossRefGoogle Scholar
Maitra, T., Tiwari, M.K., Antonini, C., Schoch, P., Jung, S., Eberle, P., Poulikakos, D., Nano Lett . 14, 172 (2014).CrossRefGoogle Scholar
Hsu, P.-C., Liu, C., Song, A.Y., Zhang, Z., Peng, Y., Xie, J., Liu, K., Wu, C.-L., Catrysse, P.B., Cai, L., Zhai, S., Majumdar, A., Fan, S., Cui, Y., Sci. Adv. 3, e1700895 (2017).CrossRefGoogle Scholar
Liu, H., Raza, A., Aili, A., Lu, J., AlGhaferi, A., Zhang, T., Sci. Rep. 6, 25414 (2016).CrossRefGoogle Scholar
Liu, C., Kong, D., Hsu, P.-C., Yuan, H., Lee, H.-W., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., Maraccini, P.A., Parker, K.M., Boehm, A.B., Cui, Y. Nat. Nanotechnol. 11, 1098 (2016).CrossRefGoogle Scholar
Lee, J.B., Choi, S., Kim, J., Nam, Y.S., Nano Today 16, 61 (2017).CrossRefGoogle Scholar
Chen, S., Takata, T., Domen, K., Nat. Rev. Mater. 2, 17050 (2017).CrossRefGoogle Scholar
Stolarczyk, J.K., Bhattacharyya, S., Polavarapu, L., Feldmann, J., ACS Catal . 8, 3602 (2018).CrossRefGoogle Scholar
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S., Chem. Rev. 110, 6446 (2010).CrossRefGoogle Scholar
Dsilva Winfred Rufuss, D., Iniyan, S., Suganthi, L., Davies, P.A., Renew. Sustain. Energy Rev. 63, 464 (2016).CrossRefGoogle Scholar
Boriskina, S.V., Tong, J.K., Hsu, W.-C., Liao, B., Huang, Y., Chiloyan, V., Chen, G., Nanophotonics 5, 134 (2016).CrossRefGoogle Scholar
Bermel, P., Lee, J., Joannopoulos, J.D., Celanovic, I., Soljacic, M., Annu. Rev. Heat Transf. 15, 231 (2012).CrossRefGoogle Scholar
Bermel, P., Boriskina, S.V., Yu, Z., Joulain, K., Opt. Express 23, A1533 (2015).CrossRefGoogle Scholar
Cao, F., Huang, Y., Tang, L., Sun, T., Boriskina, S.V., Chen, G., Ren, Z., Adv. Mater. 28, 10659 (2016).CrossRefGoogle Scholar
Mojiri, A., Taylor, R., Thomsen, E., Rosengarten, G., Renew. Sustain. Energy Rev. 28, 654 (2013).CrossRefGoogle Scholar
Cao, F., McEnaney, K., Chen, G., Ren, Z., Energy Environ. Sci. 7, 1615 (2014).CrossRefGoogle Scholar
Ni, G., Zandavi, S.H., Javid, S.M., Boriskina, S.V., Cooper, T.A., Chen, G.. Energy Environ. Sci. 11, 1510 (2018).CrossRefGoogle Scholar
Kabeel, A.E., El-Agouz, S.A., Desalination 276, 1 (2011).CrossRefGoogle Scholar
Siva Reddy, V., Kaushik, S.C., Ranjan, K.R., Tyagi, S.K., Renew. Sustain. Energy Rev. 27, 258 (2013).CrossRefGoogle Scholar
Ni, G., Miljkovic, N., Ghasemi, H., Huang, X., Boriskina, S.V., Lin, C.T., Wang, J., Xu, Y., Rahman, Md M., Zhang, T.J., Chen, G., Nano Energy 17, 290 (2015).CrossRefGoogle Scholar
Cooper, P.I., Sol. Energy 15, 205 (1973).CrossRefGoogle Scholar
Chou, J.B., Xiang, Y., Yoonkyung, Y., Lee, E., Lenert, A., Rinnerbauer, V., Celanovic, I., Soljačić, M., Fang, N.X., Wang, E.N., Kim, S.-G., Adv. Mater. 26, 8041 (2014).CrossRefGoogle Scholar
Kraemer, D., McEnaney, K., Cao, F., Ren, Z., Chen, G., Sol. Energy Mater. Sol. Cells 132, 640 (2015).CrossRefGoogle Scholar
Otanicar, T.P., Theisen, S., Norman, T., Tyagi, H., Taylor, R.A., Appl. Energy 140, 224 (2015).CrossRefGoogle Scholar
Fei Guo, C., Sun, T., Cao, F., Liu, Q., Ren, Z., Light Sci. Appl. 3, e161 (2014).CrossRefGoogle Scholar
Peters, M., Goldschmidt, J.C., Löper, P., Groß, B., Üpping, J., Dimroth, F., Wehrspohn, R.B., Bläsi, B., Energies 3, 171 (2010).CrossRefGoogle Scholar
Yeng, Y.X., Chou, J.B., Rinnerbauer, V., Shen, Y., Kim, S.-G., Joannopoulos, J.D., Soljacic, M., Celanović, I., Opt. Express 22, 21711 (2014).CrossRefGoogle Scholar
Kraemer, D., Poudel, B., Feng, H.-P., Caylor, J.C., Yu, B., Yan, X., Ma, Y., Wang, X., Wang, D., Muto, A., McEnaney, K., Chiesa, M., Ren, Z., Chen, G., Nat. Mater. 10, 532 (2011).CrossRefGoogle Scholar
Kats, M.A., Byrnes, S.J., Blanchard, R., Kolle, M., Genevet, P., Aizenberg, J., Capasso, F., Appl. Phys. Lett. 103, 101104 (2013).CrossRefGoogle Scholar
Xi, J.-Q., Schubert, M.F., Kim, J.K., Schubert, E.F., Chen, M., Lin, S.-Y., Liu, W., Smart, J.A., Nat. Photonics 1, 176 (2007).CrossRefGoogle Scholar
Lu, J.Y., Nam, S.H., Wilke, K., Raza, A., Lee, Y.E., AlGhaferi, A., Fang, N.X., Zhang, T., Adv. Opt. Mater. 4, 1255 (2016).CrossRefGoogle Scholar
Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., Zhu, S., Zhu, J., Nat. Photonics 10, 393 (2016).CrossRefGoogle Scholar
Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., Gan, Q., Yu, Z., Zhu, J., Sci. Adv. 2, e1501227 (2016).CrossRefGoogle Scholar
Lu, J.Y., Raza, A., Noorulla, S., Alketbi, A.S., Fang, N.X., Chen, G., Zhang, T., Adv. Opt. Mater. 5, 1700222 (2017).CrossRefGoogle Scholar
Tillotson, T.M., Hrubesh, L.W., J. Non. Cryst. Solids 145, 44 (1992).CrossRefGoogle Scholar
Zhao, L., Yang, S., Bhatia, B., Strobach, E., Wang, E.N., AIP Adv . 6, 025123 (2016).CrossRefGoogle Scholar
Weinstein, L.A., McEnaney, K., Strobach, E., Yang, S., Bhatia, B., Zhao, L., Huang, Y., Loomis, J., Cao, F., Boriskina, S.V., Ren, Z., Wang, E.N., Chen, G., Joule 2, 962 (2018).CrossRefGoogle Scholar
McEnaney, K., Weinstein, L., Kraemer, D., Ghasemi, H., Chen, G., Nano Energy 40, 180 (2017).CrossRefGoogle Scholar
Chan, H.-Y., Riffat, S.B., Zhu, J., Renew. Sustain. Energy Rev. 14, 781 (2010).CrossRefGoogle Scholar
Rephaeli, E., Raman, A., Fan, S., Nano Lett . 13, 1457 (2013).CrossRefGoogle Scholar
Hossain, M.M., Gu, M., Adv. Sci. 3, 1500360 (2016).CrossRefGoogle Scholar
Eriksson, T.S., Lushiku, E.M., Granqvist, C.G., Sol. Energy Mater. 11 , 149 (1984).CrossRefGoogle Scholar
Zhu, L., Raman, A., Wang, K.X., Anoma, M.A., Fan, S., Optica 1, 32 (2014).CrossRefGoogle Scholar
Chen, Z., Zhu, L., Raman, A., Fan, S., Nat. Commun. 7, 13729 (2016).CrossRefGoogle Scholar
Zandavi, S.H., Huang, Y., Ni, G., Pang, R., Osgood, R.M. III, Kamal, P., Jain, A., Chen, G., Boriskina, S.V., in Frontiers in Optics 2017, OSA Technical Digest Series (online) (Optical Society of America, 2017), paper FM4D.6, doi:10.1364/FI0.2017.FM4D.6.Google Scholar
Hsu, P.-C., Song, A.Y., Catrysse, P.B., Liu, C., Peng, Y., Xie, J., Fan, S., Cui, Y.. Science 353, 1019 (2016).CrossRefGoogle Scholar
Boriskina, S.V., Science 353, 986 (2016).CrossRefGoogle Scholar
Boriskina, S.V., Zandavi, H., Song, B., Huang, Y., Chen, G., Opt. Photonics News 28, 26 (2017).CrossRefGoogle Scholar
Peng, Y., Chen, J., Song, A.Y., Catrysse, P.B., Hsu, P.-C., Cai, L., Liu, B., Zhu, Y., Zhou, G., Wu, D.S., Lee, H.R., Fa, S., Cui, Y., Nat. Sustain. 1, 105 (2018).CrossRefGoogle Scholar
Jafar-Zanjani, S., Salary, M.M., Mosallaei, H., ACS Photonics 4, 915 (2017).CrossRefGoogle Scholar
Raza, A., Lu, J.-Y., Alzaim, S., Li, H., Zhang, T.J., Energies 11, 253 (2018).CrossRefGoogle Scholar
Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P., Halas, N.J., ACS Nano 7, 42 (2013).CrossRefGoogle Scholar
Ghasemi, H., Ni, G., Marconnet, A.M., Loomis, J., Yerci, S., Miljkovic, N., Chen, G., Nat. Commun. 5, 1 (2014).CrossRefGoogle Scholar
Zhang, L., Tang, B., Wu, J., Li, R., Wang, P., Adv. Mater. 27, 4889 (2015).CrossRefGoogle Scholar
Chang, C., Yang, C., Liu, Y., Tao, P., Song, C., Shang, W., Wu, J., Deng, T., ACS Appl. Mater. Interfaces 8, 23412 (2016).CrossRefGoogle Scholar
Zhuang, S., Zhou, L., Xu, W., Xu, N., Hu, X., Li, X., Lv, G., Zheng, Q., Zhu, S., Wang, Z., Zhu, J., Adv. Sci. 5, 1700497 (2018).CrossRefGoogle Scholar
Gao, M., Connor, P.K.N., Ho, G.W., Energy Environ. Sci. 495, 305 (2016).Google Scholar
Wang, X., He, Y., Liu, X., Cheng, G., Zhu, J., Appl. Energy 195, 414 (2017).CrossRefGoogle Scholar
Li, X., Li, J., Lu, J., Xu, N., Chen, C., Min, X., Zhu, B., Li, H., Zhou, L., Zhu, S., Zhang, T.J., Zhu, J., Joule 2, 1331 (2018).CrossRefGoogle Scholar
Liu, C., Huang, J., Hsiung, C.-E., Tian, Y., Wang, J., Han, Y., Fratalocchi, A., Adv. Sustain. Syst. 1, 1600013 (2017).CrossRefGoogle Scholar
Wang, P., Environ. Sci. Nano 5, 1078 (2018).CrossRefGoogle Scholar
Xu, N., Hu, X., Xu, W., Li, X., Zhou, L., Zhu, S., Zhu, J., Adv. Mater. 29, 1606762 (2017).CrossRefGoogle Scholar
Ni, G., Li, G., Boriskina, S.V., Li, H., Yang, W., Zhang, T., Chen, G., Nat. Energy 1, 16126 (2016).CrossRefGoogle Scholar
Hogan, N.J., Urban, A.S., Ayala-Orozco, C., Pimpinelli, A., Nordlander, P., Halas, N.J., Nano Lett . 14, 4640 (2014).CrossRefGoogle Scholar
Wang, Z., Liu, Y., Tao, P., Shen, Q., Yi, N., Zhang, F., Liu, Q., Song, C., Zhang, D., Shang, W., Deng, T., Small 10, 3234 (2014).CrossRefGoogle ScholarPubMed
Tian, L., Luan, J., Liu, K.-K., Jiang, Q., Tadepalli, S., Gupta, M.K., Naik, R.R., Singamaneni, S., Nano Lett . 16, 609 (2015).CrossRefGoogle Scholar
Zhao, D., Duan, H., Yu, S., Zhang, Y., He, J., Quan, X., Tao, P., Shang, W., Wu, J., Song, C., Deng, T., Sci. Rep. 5, 17276 (2015).CrossRefGoogle Scholar
Boriskina, S.V., Cooper, T.A., Zeng, L., Ni, G., Tong, J.K., Tsurimaki, Y., Huang, Y., Meroueh, L., Mahan, G., Chen, G., Adv. Opt. Photonics 9, 775 (2017).CrossRefGoogle Scholar
Boriskina, S.V., Ghasemi, H., Chen, G., Mater. Today 16, 375 (2013).CrossRefGoogle Scholar
Nafey, A.S., Abdelkader, M., Abdelmotalip, A., Mabrouk, A.A., Energy Convers. Manag. 43, 937 (2002).CrossRefGoogle Scholar
Liu, Y., Chen, J., Guo, D., Cao, M., Jiang, L., ACS Appl. Mater. Interfaces 7, 13645 (2015).CrossRefGoogle Scholar
Ito, Y., Tanabe, Y., Han, J., Fujita, T., Tanigaki, K., Chen, M., Adv. Mater. 27, 4302 (2015).CrossRefGoogle Scholar
Liu, K.-K., Jiang, Q., Tadepalli, S., Raliya, R., Biswas, P., Naik, R.R., Singamaneni, S., ACS Appl. Mater. Interfaces 9, 7675 (2017).CrossRefGoogle Scholar
Chen, F., Gong, A.S., Zhu, M., Chen, G., Lacey, S.D., Jiang, F., Li, Y., Wang, Y., Dai, J., Yao, Y., Song, J., Liu, B., Fu, K., Das, S., Hu, L., ACS Nano 11, 4275 (2017).CrossRefGoogle Scholar
Hong, S., Shi, Y., Li, R., Zhang, C., Jin, Y., Wang, P., ACS Appl. Mater. Interfaces 10, 28517 (2018).CrossRefGoogle Scholar
Neumann, O., Feronti, C., Neumann, A.D., Dong, A., Schell, K., Lu, B., Kim, E., Quinn, M., Thompson, S., Grady, N., Nordlander, P., Oden, M., Halas, N.J., Proc. Natl. Acad. Sci. U.S.A. 110, 11677 (2013).CrossRefGoogle Scholar
Cooper, T.A., Zandavi, S.H., Ni, G.W., Tsurimaki, Y., Huang, Y., Boriskina, S.V., Chen, G., Nat. Commun. 9, 5086 (2018).CrossRefGoogle Scholar
Ferrar, K.J., Michanowicz, D.R., Christen, C.L., Mulcahy, N., Malone, S.L., Sharma, R.K., Environ. Sci. Technol. 47, 3472 (2013).CrossRefGoogle Scholar
Sirivedhin, T., Dallbauman, L., Chemosphere 57, 463 (2004).CrossRefGoogle Scholar
Van der Bruggen, B., Vandecasteele, C., Environ. Pollut. 122, 435 (2003).CrossRefGoogle Scholar
Yang, P., Liu, K., Chen, Q., Li, J., Duan, J., Xue, G., Xu, Z., Xie, W., Zhou, J., Energy Environ. Sci. 10, 1923 (2017).CrossRefGoogle Scholar
Zhao, F., Zhou, X., Shi, Y., Qian, X., Alexander, M., Zhao, X., Mendez, S., Yang, R., Qu, L., Yu, G., Nat. Nanotechnol. 13, 489 (2018).CrossRefGoogle Scholar
Shi, Y., Li, R., Jin, Y., Zhuo, S., Shi, L., Chang, J., Hong, S., Ng, K.-C., Wang, P., Joule 2, 1171 (2018).CrossRefGoogle Scholar
Dongare, P.D., Alabastri, A., Pedersen, S., Zodrow, K.R., Hogan, N.J., Neumann, O., Wu, J., Wang, T., Deshmukh, A., Elimelech, M., Li, Q., Nordlander, P., Halas, N.J., Proc. Natl. Acad. Sci. U.S.A. 114, 6936 (2017).CrossRefGoogle Scholar
Politano, A., Argurio, P., Di Profio, G., Sanna, V., Cupolillo, A., Chakraborty, S., Arafat, H.A., Curcio, E., Adv. Mater. 29, 1603504 (2017).CrossRefGoogle Scholar
Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M., Asinari, P., arXiv:1702.05422v3 (2017).Google Scholar
Schneider, S.H., Root, T.L., Mastrandrea, M.D., Encyclopedia of Climate and Weather, 2nd ed. (Oxford University Press, New York, 2011).CrossRefGoogle Scholar
WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, Paris, 2015).Google Scholar
Zhang, L., Wu, J., Hedhili, M.N., Yang, X., Wang, P., J. Mater. Chem. A 3, 2844 (2015).CrossRefGoogle Scholar
Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., Jiang, L., Nat. Commun. 3, 1247 (2012).CrossRefGoogle Scholar
Park, K.-C., Chhatre, S.S., Srinivasan, S., Cohen, R.E., McKinley, G.H., Langmuir 29, 13269 (2013).CrossRefGoogle Scholar
Wang, Y., Wang, X., Lai, C., Hu, H., Kong, Y., Fei, B., Xin, J.H., ACS Appl. Mater. Interfaces 8, 2950 (2016).CrossRefGoogle ScholarPubMed
Hou, Y., Chen, Y., Xue, Y., Zheng, Y., Jiang, L., Langmuir 28, 4737 (2012).CrossRefGoogle Scholar
Estrela, M.J., Valiente, J.A., Corell, D., Millán, M.M., Atmos. Res. 87, 324 (2008).CrossRefGoogle Scholar
Olivier, J., de Rautenbach, C., Atmos. Res. 64, 227 (2002).CrossRefGoogle Scholar
McHugh, T.A., Morrissey, E.M., Reed, S.C., Hungate, B.A., Schwartz, E., Sci. Rep. 5, 13767 (2015).CrossRefGoogle Scholar
Wahlgren, R.V., Water Res . 35, 1 (2001).CrossRefGoogle Scholar
Wikramanayake, E.D., Ozkan, O., Bahadur, V., Energy 138, 647 (2017).CrossRefGoogle Scholar
Kim, H., Rao, S.R., Kapustin, E.A., Zhao, L., Yang, S., Yaghi, O.M., Wang, E.N., Nat. Commun. 9, 1191 (2018).CrossRefGoogle Scholar
Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., Umans, A.S., Yaghi, O.M., Wang, E.N., Science 356, 430 (2017).CrossRefGoogle Scholar
Ji, J.G., Wang, R.Z., Li, L.X., Desalination 212, 176 (2007).CrossRefGoogle Scholar
Wang, J.Y., Liu, J.Y., Wang, R.Z., Wang, L.W., Appl. Therm. Eng. 127, 1608 (2017).CrossRefGoogle Scholar
Li, R., Shi, Y., Shi, L., Alsaedi, M., Wang, P., Environ. Sci. Technol. 52, 5398 (2018).CrossRefGoogle Scholar
Li, R., Zhang, L., Shi, L., Wang, P., ACS Nano 11, 3752 (2017).CrossRefGoogle Scholar
Liu, Y., Yu, S., Feng, R., Bernard, A., Liu, Y., Zhang, Y., Duan, H., Shang, W., Tao, P., Song, C., Deng, T., Adv. Mater. 27, 2768 (2015).CrossRefGoogle Scholar
Chua, H.T., Ng, K.C., Chakraborty, A., Oo, N.M., Othman, M.A., J. Chem. Eng. Data 7, 1177 (2002).CrossRefGoogle Scholar
Wang, Y., LeVan, M.D., J. Chem. Eng. Data 54, 2839 (2009).CrossRefGoogle Scholar
Desai, R., Hussain, M., Ruthven, D.M., Can. J. Chem. Eng. 70, 699 (2009).CrossRefGoogle Scholar
Nandakumar, D.K., Ravi, S.K., Zhang, Y., Guo, N., Zhang, C., Tan, S.C., Energy Environ. Sci. 11, 2179 (2018).CrossRefGoogle Scholar
Mitridis, E., Schutzius, T.M., Sicher, A., Hail, C.U., Eghlidi, H., Poulikakos, D., ACS Nano 12, 7009 (2018).CrossRefGoogle Scholar
Dash, S., de Ruiter, J., Varanasi, K.K., Sci. Adv. 4, eaat0127 (2018).CrossRefGoogle Scholar
French, J.R., Friedrich, K., Tessendorf, S.A., Rauber, R.M., Geerts, B., Rasmussen, R.M., Xue, L., Kunkel, M.L., Blestrud, D.R., Proc. Natl. Acad. Sci. U.S.A. 115, 1168 (2018).CrossRefGoogle Scholar
Fisher, J.M., Lytle, M.L., Kunkel, M.L., Blestrud, D.R., Dawson, N.W., Parkinson, S.K., Edwards, R., Benner, S.G., Adv. Meteorol. 2018, 7293987 (2018).CrossRefGoogle Scholar
Fu, Q., Ansari, F., Zhou, Q., Berglund, L.A., ACS Nano 12, 2222 (2018).CrossRefGoogle Scholar
Liu, H., Chen, C., Wen, H., Guo, R., Williams, N.A., Wang, B., Chen, F., Hu, L., J. Mater. Chem. A 6, 18839 (2018).CrossRefGoogle Scholar
Zhu, H., Guo, Z., Liu, W., Chem. Commun. 52, 3863 (2016).CrossRefGoogle Scholar
Shi, N.N., Tsai, C.-C., Camino, F., Bernard, G.D., Yu, N., Wehner, R., Science 349, 298 (2015).CrossRefGoogle Scholar
Willot, Q., Simonis, P., Vigneron, J.-P., Aron, S., Rassart, M., Seldrum, T., PLoS One 11, e0152325 (2016).CrossRefGoogle Scholar
Cortese, L., Pattelli, L., Utel, F., Vignolini, S., Burresi, M., Wiersma, D.S., Adv. Opt. Mater. 3, 1337 (2015).CrossRefGoogle Scholar
Ruiz-Clavijo, A., Tsurimaki, Y., Caballero-Calero, O., Ni, G., Chen, G., Boriskina, S.V., Martín-González, M., ACS Photonics 5, 2120 (2018).CrossRefGoogle Scholar
Zhai, L., Berg, M.C., Cebeci, F.Ç., Kim, Y., Milwid, J.M., Rubner, M.F., Cohen, R.E., Nano Lett. 6, 1213 (2006).CrossRefGoogle Scholar
Zeng, Y., Yao, J., Horri, B.A., Wang, K., Wu, Y., Li, D., Wang, H., Energy Environ. Sci. 4, 4074 (2011).CrossRefGoogle Scholar