Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T17:52:38.107Z Has data issue: false hasContentIssue false

Nanomaterials for radiation shielding

Published online by Cambridge University Press:  08 October 2015

Sheila A. Thibeault
Affiliation:
Advanced Materials and Processing Branch, NASA Langley Research Center, USA; [email protected]
Jin Ho Kang
Affiliation:
National Institute of Aerospace, USA; [email protected]
Godfrey Sauti
Affiliation:
National Institute of Aerospace, USA; [email protected]
Cheol Park
Affiliation:
Advanced Materials and Processing Branch, NASA Langley Research Center, USA; [email protected]
Catharine C. Fay
Affiliation:
NASA Langley Research Center, USA; [email protected]
Glen C. King
Affiliation:
Advanced Materials and Processing Branch, NASA Langley Research Center, USA; [email protected]
Get access

Abstract

This article reviews the application of nanomaterials for radiation shielding to protect humans from the hazards of radiation in space. The focus is on protection from space radiation, including galactic cosmic radiation (GCR), solar particle events (SPEs), and neutrons generated from the interactions of the GCR and SPEs with the intervening matter. Although the emphasis is on protecting humans, protection of electronics is also considered. There is a significant amount of work in the literature on materials for radiation shielding in terrestrial applications, such as for neutrons from nuclear reactors; however, the space environment poses additional and greater challenges because the incident particles can have high charges and extremely high energies. For materials to be considered for radiation shielding in space, they should perform more than just the radiation-shielding function; hence the emphasis is on multifunctional materials. In space, there is also the need for materials to be very lightweight and capable of surviving temperature extremes and withstanding mechanical loading. Nanomaterials could play a significant role as multifunctional radiation-shielding materials in space.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Simpson, J.A., in Composition and Origin of Cosmic Rays, Shapiro, M.M., Ed. (D. Reidel Publishing, Dordrecht, The Netherlands, 1983), pp. 124.Google Scholar
Wilson, J.W., Townsend, L.W., Shimmerling, W., Khandelwal, G.S., Khan, F., Nealy, J.E., Cucinotta, F.A., Simonsen, L.C., Shinn, J.L., Norbury, J.W., “Transport Methods and Interactions for Space Radiations” (Tech. Rep. NASA-RP-1257, NASA Langley Research Center, Hampton, VA, 1991).Google Scholar
Adams, J.H. Jr., Hathaway, D.H., Grugel, R.N., Watts, J.W., Parnell, T.A., Gregory, J.C., Winglee, R.M., “Revolutionary Concepts of Radiation Shielding for Human Exploration of Space” (Tech. Rep. NASA/TM-2005-213688, NASA Marshall Space Flight Center, Huntsville, AL, 2005).Google Scholar
Zeitlin, C., Hassler, D.M., Cucinotta, F.A., Ehresmann, B., Wimmer-Schweingruber, R.F., Brinza, D.E., Kang, S., Weigle, G., Bottcher, S., Bohm, E., Burmeister, S., Guo, J., Kohler, J., Martin, C., Posner, A., Rafkin, S., Reitz, G., Science 340, 1080 (2013).CrossRefGoogle ScholarPubMed
Cowen, R., “Spacecraft Data Nail Down Radiation Risk for Humans Going to Mars,” Nature News (May 30, 2013), available at http://www.nature.com/news/spacecraft-data-nail-down-radiation-risk-for-humans-going-to-mars-1.13099 (accessed April 2015).Google Scholar
Kim, J., Lee, B.-C., Uhm, Y.R., Miller, W.H., J. Nucl. Mater. 453 (1), 48 (2014).Google Scholar
Kim, M.-H.Y., Wilson, J.W., Thibeault, S.A., Nealy, J.E., Badavi, F.F., Kiefer, R.L., “Performance Study of Galactic Cosmic Ray Shield Materials” (Tech. Rep. NASA-TP-3473, NASA Langley Research Center, Hampton, VA, 1994).Google Scholar
Cucinotta, F.A., Kim, M.-H.Y., Chappell, L.J., “Evaluating Shielding Approaches to Reduce Space Radiation Cancer Risks” (Tech. Rep. NASA/TM-2012–217361, NASA Lyndon B. Johnson Space Center, Houston, TX, 2012).Google Scholar
Wilkins, R., Pulikkathara, M.X., Khabashesku, V.N., Barrera, E.V., Vaidyanathan, R.K., Thibeault, S.A., “Ground-Based Space Radiation Effects Studies on Single-Walled Carbon Nanotube Materials,”Mater. Res. Soc. Symp. Proc. 851, Benson, R., Chipara, M., Edwards, D.L., Phillips, S., Eds. (Materials Research Society, Warrendale, PA, 2004).Google Scholar
Zhong, W.H., Sui, G., Jana, S., Miller, J., Compos. Sci. Technol. 69, 2093 (2009).CrossRefGoogle Scholar
Nambiar, S., Yeow, J.T.W., ACS Appl. Mater. Interfaces 4, 5717 (2012).CrossRefGoogle Scholar
Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J., Nature 386, 377 (1997).CrossRefGoogle Scholar
Mpourmpakis, G., Froudakis, G.E., Catal. Today 120 (3), 341 (2007).CrossRefGoogle Scholar
Froudakis, G.E., Mater. Today 14 (7), 324 (2011).CrossRefGoogle Scholar
Jhi, S.-H., Kwon, Y.-K., Phys. Rev. B Condens. Matter 69 (24), 245407-1 (2004).CrossRefGoogle Scholar
Panella, B., Hönes, K., Müller, U., Trukhan, N., Schubert, M., Pütter, H., Hirscher, M., Angew. Chem. Int. Ed. 47 (11), 2138 (2008).CrossRefGoogle Scholar
Ma, R., Bando, Y., Zhu, H., Sato, T., Xu, C., Wu, D., J. Am. Chem. Soc. 124 (26), 7672 (2002).CrossRefGoogle Scholar
Tang, C., Bando, Y., Ding, X., Qi, S., Golberg, D., J. Am. Chem. Soc. 124 (49), 14550 (2002).CrossRefGoogle Scholar
Özdoğan, K., Berber, S., Int. J. Hydrogen Energy 34 (12), 5213 (2009).CrossRefGoogle Scholar
Li, X.M., Tian, W.Q., Huang, X.-R., Sun, C.-C., Jiang, L., J. Mol. Struct. 901 (1), 103 (2009).CrossRefGoogle Scholar
Tanskanen, J.T., Linnolahti, M., Karttunen, A.J., Pakkanen, T.A., J. Phys. Chem. C 112 (7), 2418 (2008).CrossRefGoogle Scholar
Niemann, M.U., Srinivasan, S.S., Phani, A.R., Kumar, A., Goswami, D.Y., Stefanakos, E.K., J. Nanomater. 2008, 950967 (2008).CrossRefGoogle Scholar
Thibeault, S.A., Fay, C.C., Lowther, S.E., Earle, K.D., Sauti, G., Kang, J.H., Park, C., McMullen, A.M., “Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study—Phase I. NIAC Final Report” (NASA Innovative Advanced Concepts Program, Washington, DC, 2012), available athttp://www.nasa.gov/pdf/716082main_Thibeault_2011_PhI_Radiation_Protection.pdf (accessed April 2015).Google Scholar
Thibeault, S.A., Fay, C.C., Earle, K.D., Lowther, S.E., Sauti, G., Kang, J.H., Park, C., McMullen, A.M., “Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen” (Tech. Rep. NASA/TM-2015) (forthcoming).Google Scholar
Singleterry, R.C. Jr., Blattnig, S.R., Clowdsley, M.S., Qualls, G.D., Sandridge, C.A., Simonsen, L.C., Norbury, J.W., Slaba, T.C., Walker, S.A., Badavi, F.F., Spangler, J.L., Aumann, A.R., Zapp, E.N., Rutledge, R.D., Lee, K.T., Norman, R.B., “OLTARIS: On-Line Tool for the Assessment of Radiation In Space” (Tech. Rep. NASA-TP-2010–216722, NASA Langley Research Center, Hampton, VA, 2010).Google Scholar
Ghazizadeh, M., Estevez, J.E., Kelkar, A.D., Ryan, J.G., JSM Nanotechnol. Nanomed. 2 (2), 1030 (2014).Google Scholar
Atxaga, G., Marcos, J., Jurado, M., Carapelle, A., Orava, R., “Radiation Shielding of Composite Space Enclosures,” presented at the 63rd International Astronautical Congress, International Academy of Astronautics, Naples, Italy, October 1–5, 2012, available at http://orbi.ulg.ac.be/handle/2268/132394 (accessed April 2015).Google Scholar
Bringa, E.M., Monk, J.D., Caro, A., Misra, A., Zepeda-Ruiz, L., Duchaineau, M., Abraham, F., Nastasi, M., Picraux, S.T., Wang, Y.Q., Farkas, D., Nano Lett. 12 (7), 3351 (2011).CrossRefGoogle Scholar