Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T15:09:15.003Z Has data issue: false hasContentIssue false

Nanoconfined light metal hydrides for reversible hydrogen storage

Published online by Cambridge University Press:  07 June 2013

Petra E. de Jongh
Affiliation:
Debye Institute for Nanomaterials Science–Utrecht University, The Netherlands; [email protected]
Mark Allendorf
Affiliation:
Sandia National Laboratories, CA, USA; [email protected]
John J. Vajo
Affiliation:
HRL Laboratories, CA, USA; [email protected]
Claudia Zlotea
Affiliation:
Institut de Chimie et des Materiaux−Paris, France; [email protected]
Get access

Abstract

Nano-sizing and scaffolding have emerged in the past decade as important strategies to control the kinetics, reversibility, and equilibrium pressure for hydrogen storage in light metal hydride systems. Reducing the size of metal hydrides to the nanometer range allows fast kinetics for both hydrogen release and subsequent uptake. Reversibility of the hydrogen release is impressively facilitated by nanoconfining the materials in a carbon or metal–organic framework scaffold, in particular for reactions involving multiple solid phases, such as the decomposition of LiBH4, NaBH4, and NaAlH4. More complex is the impact of nanoconfinement on phase equilibria. It is clear that equilibrium pressures, and even decomposition pathways, are changed. However, further experimental and computational studies are essential to understand the exact origins of these effects and to unravel the role of particle size, physical confinement, and interfaces. Nevertheless, it has become clear that nanoconfinement is a strong tool to change physicochemical properties of metal hydrides, which might not only be of relevance for hydrogen storage, but also for other applications such as rechargeable batteries.

Type
Metal hydrides for clean energy applications
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Jongh, P.E., Adelhelm, P., ChemSusChem 3, 1332 (2010).CrossRefGoogle Scholar
Fichtner, M., PCCP 13, 21186 (2011).CrossRefGoogle Scholar
Nielsen, T.K., Besenbacher, F., Jensen, T.R., Nanoscale 3, 2086 (2011).CrossRefGoogle Scholar
Vajo, J.J., Curr. Opin. Solid State Mater. Sci. 15, 52 (2012).CrossRefGoogle Scholar
Roduner, E., Chem. Soc. Rev. 35, 583 (2006).CrossRefGoogle Scholar
Kim, K.C., Dai, B., Johnson, J.K., Sholl, D.S., Nanotechnology 20, 204001 (2009).CrossRefGoogle Scholar
Wagemans, R.W.P., van Lenthe, J.H., de Jongh, P.E., van Dillen, A.J., de Jong, K.P., J. Am. Chem. Soc. 127, 16675 (2005).CrossRefGoogle Scholar
Cheung, S., Deng, W.Q., van Duin, A.C.T., Goddard, W.A., J. Phys. Chem. A 109, 851 (2005).CrossRefGoogle Scholar
Oates, W.A., J. Less-Common Met. 88, 411 (1982).CrossRefGoogle Scholar
Pundt, A., Kirchheim, R., Ann. Rev. Mater. Res. 36, 555 (2006).CrossRefGoogle Scholar
Yamauchi, M., Ikeda, R., Kitagawa, H., Takata, M., J. Phys. Chem. C 112, 3294 (2008).CrossRefGoogle Scholar
Zlotea, C., Cuevas, F., Paul-Boncour, V., Leroy, E., Dibandjo, P., Gadiou, R., Vix-Guterl, C., Latroche, M., J. Am. Chem. Soc. 132, 7720 (2010).CrossRefGoogle Scholar
Wu, C., Cheung, H.-M., J. Mater. Chem. 20, 5390 (2010).CrossRefGoogle Scholar
Adelhelm, P., de Jongh, P.E., J. Mater. Chem. 21, 2417 (2011).CrossRefGoogle Scholar
Baldé, C.P., Hereijgers, B.P.C., Bitter, J.H., de Jong, K.P., Angew. Chem. Int. Ed. 45, 3501 (2006).CrossRefGoogle Scholar
Cahen, S., Eymery, J.B., Janot, R., Tarascon, J.-M., J. Power Sources 189, 902 (2009).CrossRefGoogle Scholar
Bhakta, R.K., Herberg, J.L., Jacobs, B., Highley, A., Behrens, R., Ockwig, N.W.G., Allendorf, M.D., J. Am. Chem. Soc. 131, 13198 (2009).CrossRefGoogle Scholar
Zhang, S., Gross, A.F., van Atta, S.L., Lopez, M., Liu, P., Ahn, C.C., Vajo, J.J., Jensen, C.M., Nanotechnology 20, 204027 (2009).CrossRefGoogle Scholar
Nielsen, T.K., Manickam, K., Hirscher, M., Besenbacher, F., Jensen, T.R., ACS Nano 3, 3521 (2009).CrossRefGoogle Scholar
Zlotea, C., Chevalier-Cesar, C., Leonel, E., Leroy, E., Cuevas, F., Dibandjo, P., Vix-Guterl, C., Martens, T., Latroche, M., Faraday Discuss. 151, 117 (2011).CrossRefGoogle Scholar
Zheng, S., Fang, F., Zhou, G., Chen, G., Ouyang, L., Zhu, M., Sun, D., Chem. Mater. 20, 3954 (2008).CrossRefGoogle Scholar
de Jongh, P.E., Wagemans, R.W.P., Eggenhuisen, T.M., Dauvillier, B.S., Radstake, P.B., Meeldijk, J.D., Geus, J.W., de Jong, K.P..,Chem. Mater. 19, 6052 (2007).CrossRefGoogle Scholar
Gross, A.F., Vajo, J.J.. van Atta, S.L., Olson, G.L., J. Phys. Chem. C 112, 5651 (2008).CrossRefGoogle Scholar
Stephens, R.D., Gross, A.F., van Atta, S.L., Vajo, J.J., Pinkerton, F.E., Nanotechnology 20, 204018 (2009).CrossRefGoogle Scholar
Adelhelm, P., Gao, J., Verkuijlen, M.H.W., Rongeat, C., Herrich, M., van Bentum, P.J.M., Gutfleisch, O., Kentgens, A.P.M., de Jong, K.P., de Jongh, P.E., Chem. Mater. 22, 2233 (2010).CrossRefGoogle Scholar
Nielsen, T.K., Polanski, M., Zasada, D., Javadian, P., Besenbacher, F., Bystrzycki, J., Skibsted, J., Jensen, T.R., ACS Nano 5, 4056 (2011).CrossRefGoogle Scholar
Gross, A.F., Ahn, C.C., Van Atta, S.L., Liu, P., Vajo, J.J., Nanotechnology 20, 204005 (2009).CrossRefGoogle Scholar
Bogerd, R., Adelhelm, P., Meeldijk, J.H., de Jong, K.P., de Jongh, P.E., Nanotechnology 20, 204019 (2009).CrossRefGoogle Scholar
Paskevicius, M., Sheppard, D.A., Buckley, C.E., J. Am. Chem. Soc. 132, 5077 (2010).CrossRefGoogle Scholar
Psofogiannakis, G.M., Froudakis, G.E., Chem. Commun. 47, 7933 (2011).CrossRefGoogle Scholar
Konarova, M., Tanksale, A., Norberto Beltramini, J., Qing Lu, G., Nano Energy 2, 12 (2012).Google Scholar
Zhao-Karger, Z., Hu, J.J., Roth, A., Wang, D., Kubel, C., Lohstroh, W., Fichtner, M., Chem. Commun. 46, 8353 (2010).CrossRefGoogle Scholar
Zlotea, C., Cuevas, F., Andrieux, J., Ghimbeu, C.M., Leroy, E., Léonel, E., Sengmany, S., Guterl, C.V., Gadiou, R., Martens, T., Latroche, M., Nano Energy 2, 12 (2012).CrossRefGoogle Scholar
Bogdanović, B., Schwickardi, M., J. Alloys Comp. 253254, 1 (1997).CrossRefGoogle Scholar
Schüth, F., Bogdanović, B., Taguchi, B., US Patent W02005/014469 (2003).Google Scholar
Baldé, C.P., Hereijgers, B.P.C., Bitter, J.H., de Jong, K.P., J. Am. Chem. Soc. 130, 6761 (2008).CrossRefGoogle Scholar
Nielsen, T.K., Javadian, P., Polanski, M., Besenbacher, F., Bystrzycki, J., Jensen, T.R., J. Phys. Chem. C 116, 21046 (2012).CrossRefGoogle Scholar
Gao, J., Ngene, P., Lindemann, I., Gutfleisch, O., de Jong, K.P., de Jongh, P.E., J. Mater. Chem. 22, 13209 (2012).CrossRefGoogle Scholar
Berseth, P., Harter, A.G., Zidan, R., Blomqvist, A., Moyses Araujo, C., Scheicher, R.H., Ahuja, R., Jena, P., Nano Lett. 9, 1501 (2009).CrossRefGoogle Scholar
Lohstroh, W., Roth, A., Hahn, H., Fichtner, M., ChemPhysChem 11, 789 (2010).CrossRefGoogle Scholar
Gao, J., Adelhelm, P., Verkuijlen, M.H.W., Rongeat, C., Herrich, M., van Bentum, P.J.M., Gutfleisch, O., Kentgens, A.P.M., de Jong, K.P., de Jongh, P.E., J. Phys. Chem. C 114, 4674 (2010).Google Scholar
Mueller, T., Ceder, G., ACS Nano 4, 5647 (2010).CrossRefGoogle Scholar
Majzoub, E.H., Zhou, F., Ozoliņš, V., J. Phys. Chem. C 115, 2636 (2011).CrossRefGoogle Scholar
Orimo, S., Nakamori, Y., Kitagawa, G., Miwa, K., Ohba, N., Towatat, S., Züttel, A., J. Alloys Comp. 404, 427 (2005).CrossRefGoogle Scholar
Shane, D.T., Corey, R.L., McIntosh, C., Rayhel, L.H., Bowman, R.C. Jr., Vajo, J.J., Gross, A.F., Conradi, M.S., J. Phys. Chem. C 114, 4008 (2010).CrossRefGoogle Scholar
Verkuijlen, M.H.W., Ngene, P., de Kort, D.W., Barre, C., Nale, A., van Eck, E.R.H., van Bentum, P.J.M., de Jongh, P.E., Kentgens, A.P.M., J. Phys. Chem. C. 116, 22169 (2012).CrossRefGoogle Scholar
Ngene, P., Verkuijlen, M.H.W., Zheng, Q., Kragten, J., van Bentum, P.J.M., Bitter, J.H., de Jongh, P.E., Faraday Discuss. 151, 47 (2011).CrossRefGoogle Scholar
Liu, X., Peaslee, D., Jost, C.Z., Baumann, T.F., Majzoub, E.H., Chem. Mater. 23, 1331 (2011).CrossRefGoogle Scholar
Teprovich, J.A. Jr, Wellons, M.S., Lascola, R., Hwang, S.-J., Ward, P.A., Compton, R.N., Zidan, R., Nano Lett. 12, 582 (2012).CrossRefGoogle Scholar
Adelhelm, P., de Jong, K.P., de Jongh, P.E., Chem. Commun. 41, 6261 (2009).CrossRefGoogle Scholar
Ferey, G., Chem. Soc. Rev. 37, 191 (2008).CrossRefGoogle Scholar
Zlotea, C., Campesi, R., Cuevas, F., Leroy, E., Dibandjo, P., Volkringer, C., Loiseau, T., Ferey, G., Latroche, M., J. Am. Chem. Soc. 132, 2991 (2010).CrossRefGoogle Scholar
Lim, D.-W., Roon, J.W., Ryu, K.Y., Suh, M.P., Angew. Chem. Int. Ed. 51, 9814 (2012).CrossRefGoogle Scholar
Bhakta, R.K., Maharrey, S., Stavila, V., Highley, A., Alam, T., Majzoub, E., M. Allendorf, , PCCP 14, 8160 (2012).CrossRefGoogle Scholar
Sun, W.W., Li, S., Mao, J., Guo, Z., Liu, H., Dou, S., Yu, X., Dalton Trans. 40, 5673 (2011).CrossRefGoogle Scholar
Stavila, V., Bhakta, R.K., Alam, T.M., Majzoub, E.H., Allendorf, M.D., ACS Nano (2012); doi:10.1021/nn304514c.Google Scholar
Jeon, K.J., Moon, H.R., Ruminski, A.M., Jiang, B., Kisielowski, C., Bardhan, R., Urban, J.J., Nat. Mater. 10, 286 (2011).CrossRefGoogle Scholar
Christian, M.L., Aguey-Zinsou, K.-F., ACS Nano 6, 7739 (2012).CrossRefGoogle Scholar