Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T07:59:17.693Z Has data issue: false hasContentIssue false

Multiscale simulation of enhanced water flow in nanotubes

Published online by Cambridge University Press:  12 April 2017

Matthew K. Borg
Affiliation:
The University of Edinburgh, UK; [email protected]
Jason M. Reese
Affiliation:
The University of Edinburgh, UK; [email protected]
Get access

Abstract

Nanotubes (NTs) with diameters less than 2 nm have been proposed for next-generation reverse osmosis membranes. At this molecular scale, the NTs are narrow enough to block salt ions and other contaminants, but still wide enough to allow water to flow along the NTs at seemingly unprecedented rates. Simulations for design of NT membranes can be challenging. On the one hand, the standard equations for water flow through pipes are not applicable at sub-2-nm scales due to the dominance of non-continuum phenomena; on the other hand, full molecular simulations are computationally intractable for flows up to laboratory or prototype scales. This article describes recent multiscale approaches to simulating flows through aligned NT membranes of various materials. These multiscale techniques offer a unique and economical solution that can shed light on sometimes conflicting experimental results and point the way to future engineering design of nanostructured membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, K.P., Arnot, T.C., Mattia, D., J. Membr. Sci. 370, 1 (2011).Google Scholar
Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L., Nano Lett. 10, 4067 (2010).Google Scholar
Thomas, M., Corry, B., Philos. Trans. R. Soc. Lond. A 374, 1 (2015).Google Scholar
Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005).Google Scholar
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O., Science 312, 1034 (2006).CrossRefGoogle Scholar
Du, F., Qu, L., Xia, Z., Feng, L., Dai, L., Langmuir 27, 8437 (2011).Google Scholar
Qin, X., Yuan, Q., Zhao, Y., Xie, S., Liu, Z., Nano Lett. 11, 2173 (2011).Google Scholar
Holland, D.M., Lockerby, D.A., Borg, M.K., Nicholls, W.D., Reese, J.M., Microfluid. Nanofluid. 18, 461 (2014).Google Scholar
Lockerby, D.A., Duque-Daza, C.A., Borg, M.K., Reese, J.M., J. Comput. Phys. 237, 344 (2013).Google Scholar
Lockerby, D.A., Patronis, A., Borg, M.K., Reese, J.M., J. Comput. Phys. 284, 261 (2015).Google Scholar
Borg, M.K., Lockerby, D.A., Reese, J.M., J. Fluid Mech. 768, 388 (2014).Google Scholar
Borg, M.K., Lockerby, D.A., Reese, J.M., J. Comput. Phys. 233, 400 (2013).Google Scholar
Patronis, A., Lockerby, D.A., Borg, M.K., Reese, J.M., J. Comput. Phys. 255, 558 (2013).Google Scholar
Docherty, S.Y., Borg, M.K., Lockerby, D.A., Reese, J.M., Int. J. Heat Fluid Flow 50, 114 (2014).Google Scholar
Docherty, S.Y., Borg, M.K., Lockerby, D.A., Reese, J.M., Int. J. Heat Mass Transf. 98, 712 (2016).Google Scholar
Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C., Commun. Math. Sci. 1, 715 (2003).Google Scholar
Nicholls, W.D., Borg, M.K., Lockerby, D.A., Reese, J.M., Microfluid. Nanofluid. 12, 257 (2012).Google Scholar
Borg, M.K., Lockerby, D.A., Reese, J.M., Microfluid. Nanofluid. 15, 541 (2013).Google Scholar
Ritos, K., Borg, M.K., Lockerby, D.A., Emerson, D.R., Reese, J.M., Microfluid. Nanofluid. 19, 997 (2015).Google Scholar
Stephenson, D., Lockerby, D.A., Borg, M.K., Reese, J.M., Microfluid. Nanofluid. 18, 841 (2014).Google Scholar
Nicholls, W.D., Borg, M.K., Lockerby, D.A., Reese, J.M., Mol. Simul. 38, 781 (2012).Google Scholar
Walther, J.H., Ritos, K., Cruz-Chu, E.R., Megaridis, C.M., Koumoutsakos, P., Nano Lett. 13, 1910 (2013).Google Scholar
Stephenson, D., Kermode, J.R., Lockerby, D.A, Fluid Dyn. (2016), https://arxiv.org/abs/1603.04628.Google Scholar
Ritos, K., Mattia, D., Calabrò, F., Reese, J.M., J. Chem. Phys. 140, 014702 (2014).CrossRefGoogle Scholar
Baek, Y., Kim, C., Seo, D.K., Kim, T., Lee, J.S., Kim, Y.H., Ahn, K.H., Bae, S.S., Lee, S.C., Lim, J., Lee, K., Yoon, J., J. Membr. Sci. 460, 171 (2014).Google Scholar
Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., Kim, Y.H., Nat. Commun. 6, 7109 (2015).Google Scholar
Liu, L., Patey, G.N., J. Chem. Phys. 141, 18C518 (2014).Google Scholar
Thomas, M., Corry, B., Microfluid. Nanofluid. 18, 41 (2015).Google Scholar
Ritos, K., Dongari, N., Borg, M.K., Zhang, Y., Reese, J.M., Langmuir 29, 6936 (2013).CrossRefGoogle Scholar
Kim, S., Fornasiero, F., Park, H.G., In, J.B., Meshot, E., Giraldo, G., Stadermann, M., Fireman, M., Shan, J., Grigoropoulos, C.P., Bakajin, O., J. Membr. Sci. 460, 91 (2014).Google Scholar
Majumder, M., Chopra, N., Hinds, B.J., ACS Nano 5, 3867 (2011).Google Scholar
Thomas, J.A., McGaughey, A.J.H., Nano Lett. 8, 2788 (2008).Google Scholar
Thomas, J.A., McGaughey, A.J.H., Phys. Rev. Lett. 102, 184502 (2009).Google Scholar
Elimelech, M., Phillip, W.A., Science 333, 712 (2011).Google Scholar