Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:21:20.302Z Has data issue: false hasContentIssue false

Multilayered Thin-Film Materials for Phase-Change Erasable Storage

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Phase-change erasable optical recording uses a focused laser beam as a heat source to reversibly switch a micron-sized area in a thin film between the amorphous and crystalline states. A bit of information is stored as an amorphous spot in a crystalline background, and the state of the bit is determined by the differing optical properties of the amorphous and crystalline phases. This concept was first demonstrated in 1971 and then, after about a decade of exploratory work, the field accelerated throughout the 1980s at several research laboratories. Currently the subject of number of reviews, the field of phase-change materials promises to broaden and intensify in the 1990s.

The active layer, where the storage occurs, is typically a tellurium-based alloy with a variety of solute species. Early work studied the recording properties of single-layered films, but it has been clearly shown that multilayered films, where the active layer is sandwiched between two or more dielectric layers, have superior recording properties and resistance to irreversible damage caused by laser heating. The dielectric layers (typically SiO2, Si3N4, or ZnS) provide barriers to active-layer oxidation and contamination, help prevent the hole formation associated with ablative write-once storage methods, and act as crucibles and heat sinks which contain the molten spot and influence its cooling properties, respectively. A typical multilayer structure is shown in the cross-sectional transmission electron micrograph of Figure 1.

Type
Optical Storage Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gambino, R.J., MRS Bulletin 15(4) (1990).CrossRefGoogle Scholar
2.Feinleib, J., de Nuefville, J., Moss, S.C., and Ovshinsky, S.R., App. Phys. Lett. 18 (1971) p. 254.CrossRefGoogle Scholar
3.Gravesteijn, D.J., van der Poel, C.J., Scholte, P.M.L.O., and van Uijen, C.M.J., Philips Tech. Rev. 44 (1989) p. 250258.Google Scholar
4.Gravesteijn, D.J., Appl. Optics 27 (1988) p. 736738.CrossRefGoogle Scholar
5.Terao, M., Miyauchi, Y., Andoo, K., Yasuoka, H., and Tamura, R., Proc. SPIE 1078 27 (1989).Google Scholar
6.Bell, A.E., in CRC Handbook of Laser Science and Technology, Vol. V Part 3, edited by Weber, M.J. (CRC Press, Boca Raton, 1987).Google Scholar
7.Birnie, D.P. III, in Proc. Fourth International Conference on Ultrastructure Processing (Tucson, Arizona, 1990).Google Scholar
8.Rubin, K.A. and Chen, M., Thin Solid Films, January (1990).Google Scholar
9.Chen, M. and Rubin, K.A., Proc. SPIE 1078 11 (1989).Google Scholar
10.Turnbull, D., Cont. Phys. 10 (1969) p. 473488.CrossRefGoogle Scholar
11.Hirth, J.P., Met. Trans. 9A (1978) p. 401404.CrossRefGoogle Scholar
12.Thompson, M.O. and Galvin, G.J., in Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W.L., and Lemons, R.A. (Mater. Res. Soc. Symp. Proc. 13, Pittsburgh, PA, 1983) p. 5767.Google Scholar
13.Beam-Solid Interactions and Transient Processes, edited by Thompson, M.O., Picraux, S.T., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 13, Pittsburgh, PA, 1987).Google Scholar
14.Beam-Solid Interactions and Phase Transformations, edited by Kurz, H., Olson, G.L., and Poate, J.M. (Mater. Res. Soc. Symp. Proc. 13, Pittsburgh, PA, 1986).Google Scholar
15.Tourand, G., Cabane, B., and Breuil, M., J. Non-Cryst. Solids 8-10 (1972) p. 676686.CrossRefGoogle Scholar
16.Chen, M., Rubin, K.A., and Barton, R.W., Appl. Phys. Lett. 49 (1986) p. 502504.CrossRefGoogle Scholar
17.Takenaga, M., Yamada, N., Ohara, S., Nishiuchi, K., Nagashima, M., Kashihara, T., Nakamura, S., and Yamashita, T., Proc. Photo-Opt. Inst. Eng. 420 (1983) p. 173.Google Scholar
18.Greer, A.L., Acta Metall. 30 (1982) p. 171192.CrossRefGoogle Scholar
19.Chen, M., Rubin, K.A., Marrello, V., Gerber, U.G., and Jipson, V.B., Appl. Phys. Lett. 46 (1985) p. 734736.CrossRefGoogle Scholar
20.Libera, M., Chen, M., and Rubin, K.A., in Optical Materials: Processing and Science, edited by Poker, D.B. and Ortiz, C., (Mater. Res. Soc. Symp. Proc. 152, Pittsburgh, PA, 1989).Google Scholar
21.Libera, M., Chen, M., and Rubin, K.A., “Ge Supersaturation during the Crystallization of Laser-Heated Te-Ge-Sn Films,” submitted to Journal of Materials Research.Google Scholar
22.van der Poel, C.J., Gravesteijn, D.J., Rippens, W.G.V.M., Srockx, H.T.L.P., and van Uijen, C.M.J., J. Appl. Phys. 59 (1986) p. 18191821.CrossRefGoogle Scholar
23.Ohta, T., Uchida, M., Yoshioka, K., Inoue, K., Akiyama, T., Furukawa, S., Kotera, K., and Nakamura, S., Proc. Soc. Photo-Opt. Inst. Eng., Technical Digest Series 1 (1989) p. 14.Google Scholar
24.Yamada, N., Takao, M., and Takenaga, M., Optical Mass Storage II, edited by Freese, R.P., DeHaan, M., and Jamberdino, A. (SPIE, Bellingham, WA, 1986) p. 7985.Google Scholar
25.Ueno, F., Jpn. J. Appl. Phys. 26 Supplement 26-4 (1987) p. 5560.CrossRefGoogle Scholar
26.Rhee, J.C., Okuda, M., Matsushita, T., Jpn. J. Appl. Phys. 26 (1987) p. 102105.CrossRefGoogle Scholar
27.Matsushita, T., Suzuki, A., Okuda, M., Rhee, J.C., and Naito, H., Jpn. J. Appl. Phys. 24 (1985) p. L504L506.CrossRefGoogle Scholar
28.Chopra, K.L. and Bahl, S.K., J. Appl. Phys. 40 (1969) p. 41714178, J. Appl. Phys. 40 (1969) p. 4940-4947, J. Appl. Phys. 41 (1970) p. 2196-2212.CrossRefGoogle Scholar
29.Huber, E. and Marinero, E.E., Phys. Rev. B 36 (1987) p. 15951604.CrossRefGoogle Scholar
30.Selenium, edited by Zingaro, R. and Cooper, W.C. (Van Nostrand Reinhold, New York, 1974).Google Scholar
31.Tellurium, edited by Cooper, W.C. (Van Nostrand Reinhold, New York, 1971).Google Scholar
32.Bell, A.E. and Spong, F.W., IEEE J. Quantum Electron QE-14 (1978) p. 487595.CrossRefGoogle Scholar
33.Baglin, J.E.E., in Fundamentals of Adhesive Bonding, edited by Lee, L.H., (Plenum, New York, 1989).Google Scholar