Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T18:06:18.188Z Has data issue: false hasContentIssue false

Monodisperse 3d Transition-Metal (Co,Ni,Fe) Nanoparticles and Their Assembly intoNanoparticle Superlattices

Published online by Cambridge University Press:  03 May 2012

Get access

Extract

Magnetic colloids, or ferrofluids, have been studied to probe the fundamental size-dependent properties of magnetic particles and have been harnessed in a variety of applications. The magnetorheological properties of magnetic colloids have been exploited in high-performance bearings and seals. The deposition of magnetic dispersions on platters and tapes marked the earliest embodiments of magnet information storage. Magnetic particles enhance contrast in magnetic resonance imaging and promise future diagnostic and drug delivery applications. The need to explore the scaling limits of magnetic storage technology has motivated the preparation of size-tunable monodisperse magnetic nanoparticles with controlled internal structures. The study of these nanoparticles is critical to efforts to separate the role of defects from intrinsic, finite size effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stoner, E.C. and Wohlfarth, E.P.Philos. Trans. R. Soc. London Ser. A 240 (1948) p. 599; F.E., Luborsky, J. Appl. Phys. 32 (1961) p. 171S; For a review, see J.L., Dormann, D., Fiorani, and E., Tronc, Adv. Chem. Phys. 98 (1997) p. 283; K. O'Grady, R.W., Chantrell, Magnetic Properties of Fine Particles (Elsevier, Amsterdam, 1992) p. 93.Google Scholar
2.Aharoni, A.Introduction to the Theory of Ferro-magnetism (Oxford University Press, New York, 1996) p.133.Google Scholar
3.Neel, L.Ann. Geofis. 5 (1949) p. 99; W.F., Brown Phys. Rev. 130 (1963) p.1677.Google Scholar
4.Morup, S. in Nanomagnetism, edited by Hernando, A. (Kluwer Academic Publishers, Boston, 1993) p.93.CrossRefGoogle Scholar
5.Blums, E.Cebers, A. and Maiorov, M.M.Magnetic Fluids (Walter de Gruyter, New York, 1997) p.343; R.E., Rosenwieg Ferrohydrodynamics (Dover Publishing, New York, 1998); B.M., Berkovskii and V.G Bashtovio, Magnetic Fluids and Applications Handbook (Begell House, New York, 1996).Google Scholar
6.Koster, E. in Magnetic Recording Technology, 2nd ed., edited by Mee, C.D. and Daniel, E.D. (McGraw-Hill, New York, 1996) p.3.1.Google Scholar
7.For a review, see Bonnemain, B.J. Drug Targeting 6 (3) (1998) p.167; Y., Okuhata, Adv. Drug Deliv. Rev. 37 (1–3) (1999) p. 121; Y.R., Chemla, H.L., Crossman, Y., Poon, R., McDermott, R., Stevens, M.D., Alper, and J., Clarke, Proc. Natl. Acad. Sci. U.S.A. 97 (26) (2000) p.14268.CrossRefGoogle Scholar
8.Lu, P.L.Charap, D.H.IEEE Trans. Magn. 30 (1994) p.4230.Google Scholar
9.Weller, D. and Moser, A.IEEE Trans. Magn. 35 (1999) p.4423.CrossRefGoogle Scholar
10.Sun, S.Weller, D. and Murray, C.B. in The Physics of High Density Magnetic Recording, edited by Plumer, M.Ek, J. van, and Weller, D. (Springer-Verlag, New York) in press.Google Scholar
11.Black, C.T.Murray, C.B.Sandstrom, R.L. and Sun, S.Science 290 (2000) p.1131.CrossRefGoogle Scholar
12.Sun, S.Murray, C.B. and Doyle, H. in Advanced Hard and Soft Magnetic Materials, edited by Coey, M.Lewis, L.H.Ma, B.-M.Schrefl, T.Schultz, L.Fidler, J.Harris, V.G.Hasegawa, R.Inoue, A. and McHenry, M. (Mat. Res. Soc. Symp. Proc. 577, Warrendale, PA, 1999) p. 385.Google Scholar
13.Sun, S. and Murray, C.B.J. Appl. Phys. 85 (1999) p.4325.CrossRefGoogle Scholar
14.Murray, C.B.Kagan, C.R. and Bawendi, M.G. in Annu. Rev. Mater. Sci. 30 (2000) p. 545; C.B., Murray, C.R., Kagan and M.G., Bawendi Science 270 (1995) p.1335.CrossRefGoogle Scholar
15.Peng, X.Wickham, J. and Alivisatos, A.P.J.Am. Chem. Soc. 120 (1998) p.5343.CrossRefGoogle Scholar
16.Bentzon, M.D.Wonterghem, J.van, Mørup, S., and Thölén, A., Philos. Mag. B 60 (1989) p. 169.CrossRefGoogle Scholar
17.Sun, S.Murray, C.B.Weller, D.Folks, L. and Moser, A.Science 287 (2000) p.1989.CrossRefGoogle Scholar
18.Fievet, F.Lagier, J.P. and Figlarz, M.MRS Bull. 14 (12) (1989) p. 29; G., Viau, F., Ravel, O., Archer, F. Fievet-Vincent, F., Fievet, J. Magn. Magn. Mater. 377 (1995) p.140; G.M., Chow, L.K., Kurihara, K.M., Kemner, P.E., Schoen, W.T., Elam, A., Ervin, S., Keller, Y.D., Zhang, J., Budnick, and T., Ambrose, J. Mater. Res. 10 (6) (1995) p. 1546.CrossRefGoogle Scholar
19.Murray, C.B.Sun, S.Gaschler, W.Doyle, H.Betley, T.A. and Kagan, C.R.IBM J. Res. & Dev. 45 (1) (2001) p.47.CrossRefGoogle Scholar
20.Hall, B.D. and Monot, R.Comput. Phys. 5 (1991) p.414.CrossRefGoogle Scholar
21.Hess, P.H. and Parker, P.J. Appl. Polym. Sci. 10 (1966) p.1915.CrossRefGoogle Scholar
22.Papirer, E.Horny, P.Balard, H.Anthore, R.Petipas, C. and Martinet, A.J. Colloid Interface Sci. 94 (1) (1983) p.207 and p.220.CrossRefGoogle Scholar
23.Yin, J.S. and Wang, Z.L.J. Phys. Chem. B 101 (1997) p.8979.CrossRefGoogle Scholar
24.Wiedwald, U.Spasova, M.Farle, M.Hilgendorff, M. and Giersig, M.J.Vac. Sci. Technol., A 19 (4) p.1773.CrossRefGoogle Scholar
25.Berkov, D.V.Gornert, P.Buske, N.Gansau, C.Mueller, J., Giersig, M.Neumann, W. and Su, D.J.Phys. D: Appl. Phys. 33 (4) 2000 p.331.CrossRefGoogle Scholar
26.Puntes, V.F.Krishnan, K.M. and Alivisatos, A.P.Appl. Phys. Lett. 78 (15) (2001) p. 2187; V.F., Puntes, K.M., Krishnan and A.P., Alivisatos Science 291 (2001) p.2115.CrossRefGoogle Scholar
27.Marks, L.D.Rep. Prog. Phys. 57 (1994) p.603.CrossRefGoogle Scholar
28.Kitakami, O.Sato, H.Shimada, Y.Sato, F. and Tanaka, M.Phys. Rev. B 56 (21) (1997) p.13849.CrossRefGoogle Scholar
29.Dinega, D.P. and Bawendi, M.G.Angew. Chem. 38 (1999) p.1788.3.0.CO;2-2>CrossRefGoogle Scholar
30.Diehl, M.R.Yu, J.-Y.Heath, J.R.Held, G.A.Doyle, H.Sun, S. and Murray, C.B.J. Phys. Chem. 105 (33) (2001) p.7913.CrossRefGoogle Scholar
31.Held, G.A.Grinstein, G.Doyle, H.Sun, S. and Murray, C.B.Phys. Rev. B 64 (2001) p.012408.CrossRefGoogle Scholar
32.Yi, J.Y.Platt, C.L.Rudee, M.L.Berkowitz, A.E. and Cheeks, T.L.J.Appl. Phys. 79 (8) (1996) p.5072.CrossRefGoogle Scholar
33.Papusoi, C. Jr., Stancu, Al. and Dormann, J.L.J.Magn. Magn. Mater. 174 (1997) p.236; C. Papusoi Jr., Al., Stancu, C., Papusoi, J.L., Dormann, M., Nogues and E., Tronc IEEE Trans. Magn. 34 (4) (1998) p.1138.CrossRefGoogle Scholar
34.Legrand, J., Petit, C. and Pileni, M.P.J.Phys. Chem. B 105 (24) (2001) p. 5643; J., Legrand, C., Petit, D., Bazin, and M.P., Pileni, Appl. Surf. Sci. 164 (2000) p. 186; C., Petit, A., Taleb, and M.P., Pileni, J.Phys. Chem. B 103 (11) (1999) p.1805.CrossRefGoogle Scholar
35.Korgel, B.A. and Fitzmaurice, D.Phys. Rev. B 59 (1999) p. 14191; B.A., Korgel, and D. Fitz-maurice, Phys. Rev. Lett. 80 (1998) p.3531.CrossRefGoogle Scholar