Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T18:04:25.387Z Has data issue: false hasContentIssue false

Molecules in the Solid State

Published online by Cambridge University Press:  31 January 2011

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The design and synthesis of solid-state materials constructed from molecules has emerged as an important frontier of materials research. Molecular materials promise an unparalleled opportunity for systematic manipulation of solid-state properties and functions by using molecular design principles and capitalizing on the versatility of organic synthesis. Furthermore, the use of molecular components may produce considerable economic benefits, whether by reducing fabrication cost or through increases in performance. The articles in this issue of MRS Bulletin cover recent discoveries and developments based on materials with properties and functions that hinge on the characteristics of their molecular constituents. These materials promise significant advances in several technologies of substantial commercial interest, including organic light-emitting diodes, nonlinear optics, gas separations, chiral separations, and molecular magnets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

References

1.Patolsky, F., Timko, B.P., Zheng, G., Lieber, C.M., MRS Bull. 32 (2), 142 (2007).Google Scholar
2.Cohen, M.D., Schmidt, G.M.J., Sonntag, F.I., J. Chem. Soc., 2000 (1964).Google Scholar
3.Kistenmacher, J., Philips, T.E., Cowan, D.O., Acta Crystallogr., Sect. B: Struct. Sci 30, 763 (1974).Google Scholar
4.Bendikov, M., Wudl, F., Perepichka, D.F., Chem. Rev. 104, 4891 (2004).Google Scholar
5.Wudl, F., Acc. Chem. Res. 17, 227 (1984).Google Scholar
6.Torrance, J.B., Acc. Chem. Res. 12, 79 (1979).CrossRefGoogle Scholar
7.Bechgaard, K., Jerome, D., Sci. Am. 247, 52 (1982).Google Scholar
8.Williams, J.M. et al., Organic Superconductors (Including Fullerenes) (Prentice Hall, Englewood Cliffs, NJ, 1992).Google Scholar
9.Karl, N., J. Cryst. Growth 99, 1009 (1990).Google Scholar
10.Pope, M., Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, ed. 2, 1999).Google Scholar
11.Forrest, S.R., J. Phys.: Condens. Matter 15, S2599 (2003).Google Scholar
12.Rogers, J.A., Bao, Z., Katz, H.E., Dodabalapur, A., Thin-Film Transistors, Kagan, C.R., Andry, P., Eds. (Marcel Dekker, NY, 2003) p. 377.Google Scholar
13.Podzorov, V. et al., Appl. Phys. Lett. 83, 3504 (2003).CrossRefGoogle Scholar
14.Sundar, V.C. et al., Science 303, 1644 (2004).Google Scholar
15.Foley, J.L. et al., J. Am. Chem. Soc. 121, 7262 (1999).CrossRefGoogle Scholar
16.Sun, A., Lauher, J.W., Goroff, N.S., Science 312, 1030 (2006).Google Scholar
17.Enkelmann, V., Leyrer, R.J., Schleier, G., Wegner, G., J. Mater. Sci. 15, 168 (1980).Google Scholar
18.Pivovar, A.M., Holman, K.T., Ward, M.D., Chem. Mater. 13, 3018 (2001).CrossRefGoogle Scholar
19.Roswell, J.L.C. et al., Science 309, 1350 (2005).Google Scholar
20.Jones, W., Motherwell, S., Trask, A.V., MRS Bull. 31 (11), 875 (2006).Google Scholar
21.Allen, F.H., Acta Crystallogr. B58, 380 (2002).CrossRefGoogle Scholar