Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T04:03:43.519Z Has data issue: false hasContentIssue false

Molecular Transport Junctions: An Introduction

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This issue of MRS Bulletin on molecular transport junctions highlights the current experimental and theoretical understanding of molecular charge transport and its extension to the rapidly growing areas of molecular and carbon nanotube electronics. This introduction will outline the progress that has been made in understanding the mechanisms of molecular junction transport and the challenges and future directions in exploring charge transport on the molecular scale. In spite of the substantial challenges, molecular charge transport is of great interest for its intrinsic importance to potential single-molecule electronic, thin-film electronic, and optoelectronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

References

1Mann, B. and Kuhn, H.J.Appl. Phys. 42 (1971) p. 4398; E.E. Polymeropoulos and J. Sagiv, J. Chem. Phys. 69 (1978) p. 1836; L. Netzer and J.Sagiv, J.Am. Chem. Soc. 105 (1983) p.674.CrossRefGoogle Scholar
2Leger, A. J.Klein, Belin, M. and Defourne, D.Thin Solid Films 8 (1971) p. R51.CrossRefGoogle Scholar
3Aviram, A. and Ratner, M.A.Chem. Phys. Lett. 29 (1974) p.277.CrossRefGoogle Scholar
4Carter, F.L.Siatkowski, R.E. and Wohltjen, H. eds., Molecular Electronic Devices: Proc. 3rd Intl. Symp. on Molecular Electronic Devices (North-Holland, New York, 1989).Google Scholar
5Binning, G.Rohrer, H.Gerber, C. and Weibel, E.Phys. Rev. Lett. 49 (1982) p.57.CrossRefGoogle Scholar
6Petty, M.C.Bryce, M.R. and Bloor, D.Introduction to Molecular Electronics (Oxford University Press, Oxford, 1995); C.A. Mirkin and M.A. Ratner, Annu. Rev. Phys. Chem. 43 (1992) p. 719; A. Aviram, ed., Molecular Electronics—Science and Technology (American Institute of Physics, College Park, MD, 1992); A. Aviram, M.A. Ratner, and V. Mujica, eds., Ann. N.Y. Acad. Sci. 852 (1998); J. Jortner and M.A. Ratner, eds., Molecular Electronics (Blackwell Science, Cambridge, MA, 1997); C. Joachim, J.K. Gimzewski, and A. Aviram, Nature 408 (2000) p. 541; M.A. Ratner and M.A. Reed, Encyclopedia of Science and Technology, 3rd ed., Vol.10 (Academic Press, New York, 2002); V. Mujica and M.A. Ratner, in Handbook of Nanoscience, Engineering and Technology, edited by W.A. Goddard III, D.W. Brenner, S.E. Lyshevshi, and G.J. Iafrate (CRC Press, Boca Raton, FL, 2002); C. Joachim, J.K. Gimzewski, and A. Aviram, Nature 408 (2000) p. 541; P. Hänggi, M. Ratner, and S. Yaliraki, eds., Chem Phys. 281 (2002); M.A. Reed and T. Lee, eds., Molecular Nanoelectronics (American Scientific Publishers, Stevenson Ranch, CA, 2003).Google Scholar
7Joachim, C.Gimzewski, J.K.Schlitter, R.R. and Chavy, C.Phys. Rev. Lett. 74 (1995) p. 2102.CrossRefGoogle Scholar
8Dorogi, M. J.Gomez, Osifchinn, R.Andres, R.P. and Reifenberger, R.Phys. Rev. B 52 (1995) p.9071.CrossRefGoogle Scholar
9Reed, M.A.Zhou, C.Miller, C.J.Burgin, T.P. and Tour, J.M.Science 278 (1997) p. 252; H.B. Weber, J. Reichert, F. Weigend, R. Ochs, D. Beckmann, M. Mayor, R. Ahlrichs, and H. von Löhneysen, Chem. Phys. 281 (2002) p. 113; and C. Kergueris, J.P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim, Phys. Rev. B 59 (1999) p.12505.CrossRefGoogle Scholar
10Mujica, V.Kemp, M. and Ratner, M.A.J.Chem. Phys. 101 (1994) p.6849.CrossRefGoogle Scholar
11Datta, S.Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995); W. Tian, S. Datta, S.H. Hong R. Reifenberger, J.I. Henderson and C.P. Kubiak J.Chem. Phys. 109 (1998) p.2874.CrossRefGoogle Scholar
12Nitzan, A.Ann. Rev. Phys. Chem. 52 (2001) p.681.CrossRefGoogle Scholar
13Xue, Y.Datta, S. and Ratner, M.A.J. Chem. Phys. 115 (2001) p.4292.CrossRefGoogle Scholar
14Mann, D.Javey, A.Kong, J.Wang, Q. and Dai, H.J.Nano Lett. 3 (2003) p.1541.CrossRefGoogle Scholar
15Ghosh, A.W.Rakshit, T. and Datta, S. arXiv.org e-print archive, cond-mat/0212166 (accessed March 2004); P.E. Kornilovitch, A.M. Bratkovsky, and M.S. Williams, Phys. Rev. B 66 245413 (2002); A. Troisi and M.A. Ratner, J.Am. Chem. Soc. 124 (2002) p.14528.Google Scholar
16Wong, E.W.Collier, C.P.Behloradsky, M.Raymo, F.M.Stoddart, J.F. and Heath, J.R.J.Am. Chem. Soc. 122 (2000) p.5831.CrossRefGoogle Scholar
17McCreery, R.Dieringer, J.Solak, A.O.Snyder, B.Nowak, A.M.McGovern, W.R. and DuVall, S.J.Am. Chem. Soc. 125 (2003) p.10748.CrossRefGoogle Scholar
18Chen, J., Su, J.Wang, W. and Reed, M.A.Physica E16 (2003) p.17.CrossRefGoogle Scholar
19Nazin, G.V.Hahn, J.R. and Ho, W.Science 302 (2003) p.77.CrossRefGoogle Scholar
20Yaish, Y.Park, J.Y.Rosenblatt, S.Sazonova, V.Brink, M. and McEuen, P.L.Phys. Rev. Lett. 92 046401 (2004).CrossRefGoogle Scholar
21Donhauser, Z.J.Mantooth, B.A.Kelly, K.F.Bumm, L.A.Monnell, J.D.Stapleton, J.J.Price, D.W. Jr , Rawlett, A.M.Allara, D.L.Tour, J.M. and Weiss, P.S.Science 292 (2001) p. 2303.CrossRefGoogle Scholar
22Ramachandran, G.K.Hopson, T.J.Rawlett, A.M.Nagahara, L.A.Primak, A. and Lindsay, S.M.Science 300 (2003) p.1413.CrossRefGoogle Scholar
23Reichert, J.Ochs, R.Beckmann, D.Weber, H.B.Mayor, M. and Löhneysen, H.v., Phys. Rev. Lett. 88 176804–1 (2002).CrossRefGoogle Scholar
24Lenfant, S.Krzeminski, C.Delerue, C.Allan, G. and Vuillaume, D.Nano Lett. 3 (2003) p.741.CrossRefGoogle Scholar
25Park, J.Pasupathy, A.N.Goldsmith, J.I.Chang, C.Yaish, Y.Petta, J.R.Rinkoski, M.Sethna, J.P.Abruna, H.D., McEuen, P.L. and Ralph, D.C.Nature 417 (2002) p. 722; W. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park, Nature 417 (2002) p.725.CrossRefGoogle Scholar
26Lin, C. and Kagan, C.R., J.Am. Chem. Soc. 125 (2003) p.336.CrossRefGoogle Scholar