Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:58:35.044Z Has data issue: false hasContentIssue false

Molecular Design of Inorganic-Binding Polypeptides

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Controlled binding and assembly of peptides onto inorganic substrates is at the core of bionanotechnology and biological-materials engineering. Peptides offer several unique advantages for developing future inorganic materials and systems. First, engineered polypeptides can molecularly recognize inorganic surfaces that are distinguishable by shape, crystallography, mineralogy, and chemistry. Second, polypeptides are capable of self-assembly on specific material surfaces leading to addressable molecular architectures. Finally, genetically engineered peptides offer multiple strategies for their functional modification. In this article, we summarize the details and mechanisms involved in combinatorial-polypeptide sequence selection and inorganic-material recognition and affinity, and outline experimental and theoretical approaches and concepts that will help advance this emerging field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Smith, G.P., Science 228, 1315 (1985).CrossRefGoogle Scholar
2.Wittrup, K.D., Curr. Opin. Biotechnol. 12, 395 (2001).CrossRefGoogle Scholar
3.Amstutz, P., Forrer, P., Zahnd, C., Plückthun, A., Curr. Opin. Biotechnol. 12, 400 (2001).CrossRefGoogle Scholar
4.Brown, S., Nat. Biotechnol. 15, 269 (1997).CrossRefGoogle Scholar
5.Schembri, M., Kjaergaard, K., Klemm, P., FEMS Microbiol. Lett. 170, 363 (1999).CrossRefGoogle Scholar
6.Brown, S., Sarikaya, M., Johnson, E., J. Mol. Biol. 299, 725 (2000).CrossRefGoogle Scholar
7.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M., Nature 405, 665 (2000).CrossRefGoogle Scholar
8.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).CrossRefGoogle Scholar
9.Li, C.M., Botsaris, G.D., Kaplan, D.L., Cryst. Growth Des. 2, 387 (2002).CrossRefGoogle Scholar
10.Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K., Baneyx, F., Nat. Mater. 2, 577 (2003).CrossRefGoogle Scholar
11.Thai, C.K., Dai, H.X., Sastry, M.S.R., Sarikaya, M., Schwartz, D.T., Baneyx, F., Biotechnol. Bioeng. 87, 129 (2004).CrossRefGoogle Scholar
12.Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, K., Takami, S., Watanabe, S., Kumagai, H., Adschiri, I., T. Adv. Mater. 17, 2571 (2005).CrossRefGoogle Scholar
13.Sano, K.I., Sasaki, H., Shiba, K., Langmuir 21, 3090 (2005).CrossRefGoogle Scholar
14.Seker, O.U.S., Wilson, B., Dincer, S., Kim, I.W., Oren, E.E., Evans, J.S., Tamerler, C., Sarikaya, M., Langmuir 23, 7895 (2007).CrossRefGoogle Scholar
15.Sarikaya, M., Tamerler, C., Schwartz, D.T., Baneyx, F., Ann. Rev. Mat. Res. 34, 373 (2004).CrossRefGoogle Scholar
16.Tamerler, C., Oren, E.E., Duman, M., Venkatasubramanian, E., Sarikaya, M.Langmuir 22 (18), 7712 (2006).CrossRefGoogle Scholar
17.Kulp, L. III, Sarikaya, M., Evans, J.S., J. Mater. Chem. 14, 2325 (2004).CrossRefGoogle Scholar
18.Oren, E.E., Tamerler, C., Sarikaya, M., Nano Lett. 5, 415 (2005).CrossRefGoogle Scholar
19.Kulp, J.L. III, Shiba, K., Evans, J.S., Langmuir 21, 11907 (2005).CrossRefGoogle Scholar
20.Gungormus, M., Fong, H., Kim, I.W., Evans, J.S., Tamerler, C., Sarikaya, M., Biomacromole-cules 9, 966 (2008).CrossRefGoogle Scholar
21.Evans, J.S., Curr. Opin. Colloid Interface Sci. 8, 48 (2003).CrossRefGoogle Scholar
22.Collino, S., Evans, J.S., Biomacromolecules 8, 1686 (2007).CrossRefGoogle Scholar
23.Kim, I.W., Collino, S., Morse, D.E., Evans, J.S., Cryst. Growth Des. 6, 1078 (2006).CrossRefGoogle Scholar
24.Collino, S., Kim, I.W., Evans, J.S., Cryst. Growth Des. 6, 839 (2006).CrossRefGoogle Scholar
25.Wales, D.J., Miller, M.A., Walsh, T.R., Nature 394, 758 (1998).CrossRefGoogle Scholar
26.Wales, D.J., “Energy Landscapes,” Cambridge University Press (Cambridge) (2003).Google Scholar
27.Foloppe, N. and Mackerell, A.D., J. Comput. Chem., 21, 86 (2000).3.0.CO;2-G>CrossRefGoogle Scholar
28.Wang, J., Cieplak, P. and Kollman, P.A., J. Comput. Chem., 21, 1049 (2000).3.0.CO;2-F>CrossRefGoogle Scholar
29.Bandura, A.V. and Kubicki, J.D., J. Phys. Chem. B., 107, 11072 (2003).CrossRefGoogle Scholar
30.Mahadevan, T.S. and Garofalini, S.H., J. Phys. Chem. C, 112, 1507 (2008).CrossRefGoogle Scholar
31.Freeman, C.L., Harding, J.H., Cooke, D.J., Elliott, J.A., Lardge, J.S., Duffy, D.M., J. Phys. Chem. C 111, 11943 (2007).CrossRefGoogle Scholar
32.Tomasio, S.D., Walsh, T.R., Mol. Phys. 105, 221 (2007).CrossRefGoogle Scholar
33.Bachmann, M. and Janke, W., Phys. Rev. Lett., 95, 058102 (2006).CrossRefGoogle Scholar
34.Biggs, M.J. and Mijajlovic, M., J. Phys. Chem. C, 111, 15839 (2007).Google Scholar
35.Carravetta, V. and Monti, S., J. Phys. Chem. B, 110, 6160 (2006).CrossRefGoogle Scholar
36.Schrevandijk, P., Ghiringhelli, L.M., Delle Site, L., van der Vegt, N.F.A., J. Phys. Chem. C 111, 2631 (2007).CrossRefGoogle Scholar
37.Oren, E.E., Tamerler, C., Sahin, D., Hnilova, M., Seker, U.O.S., Sarikaya, M., Samudrala, R., Bioinformatics 23, 2816 (2007).CrossRefGoogle Scholar
38.Attwood, T.K., Science 27, 471 (2000).CrossRefGoogle Scholar
39.Needleman, S.B., Wunsch, C.D., J. Mol. Biol. 48, 443 (1970).CrossRefGoogle Scholar
40.Smith, T.F., Waterman, M.S., J. Mol. Biol. 147, 195 (1981).CrossRefGoogle Scholar