Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T15:06:48.723Z Has data issue: false hasContentIssue false

Modeling slip and flow enhancement of water in carbon nanotubes

Published online by Cambridge University Press:  12 April 2017

Sridhar Kumar Kannam
Affiliation:
IBM Research–Australia, Australia; [email protected]
Peter J. Daivis
Affiliation:
RMIT University, Australia; [email protected]
B.D. Todd
Affiliation:
Swinburne University of Technology, Australia; [email protected]
Get access

Abstract

Transport properties of fluids in nanopores are of both fundamental as well as practical interest. Water flow in carbon nanotubes (CNTs) has received significant attention since the early 2000s for technological applications of CNTs. In this article, we provide a brief overview of modeling the slip and flow enhancement of water in CNTs. A number of experimental and computational studies have found water to flow very fast in CNTs, but the measured flow rates, which are high compared to classical hydrodynamics predictions, are scattered over 2–5 orders of magnitude. Slip lengths of 1 to 500,000 nm, resulting in almost zero to 500,000 flow enhancement, are reported for water in CNTs with diameters of 0.8 to 10 nm. We highlight some challenges in modeling fluid flow in nanopores and outline a few research directions that may resolve the order of slip and flow enhancement of water in CNTs in computational studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eijkel, J.C., Van Den Berg, A., Microfluid. Nanofluid. 1, 249 (2005).CrossRefGoogle Scholar
Schoch, R.B., Han, J., Renaud, P., Rev. Mod. Phys. 80, 839 (2008).CrossRefGoogle Scholar
Alexiadis, A., Kassinos, S., Chem. Rev. 108, 5014 (2008).CrossRefGoogle Scholar
Mattia, D., Gogotsi, Y., Microfluid. Nanofluid. 5, 289 (2008).CrossRefGoogle Scholar
Noy, A., Park, H.G., Fornasiero, F., Holt, J.K., Grigoropoulos, C.P., Bakajin, O., Nano Today 2, 22 (2007).CrossRefGoogle Scholar
Kannam, S.K., Todd, B.D., Hansen, J.S., Daivis, P.J., J. Chem. Phys. 138, 094701 (2013).CrossRefGoogle Scholar
Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005).CrossRefGoogle Scholar
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O., APS Mtg. Abstr. 1, 18012 (2006).Google Scholar
Majumder, M., Chopra, N., Hinds, B.J., ACS Nano 5, 3867 (2011).CrossRefGoogle Scholar
Majumder, M., Corry, B., Chem. Commun. 47, 7683 (2011).CrossRefGoogle Scholar
Du, F., Qu, L., Xia, Z., Feng, L., Dai, L., Langmuir 27, 8437 (2011).CrossRefGoogle Scholar
Qin, X., Yuan, Q., Zhao, Y., Xie, S., Liu, Z., Nano Lett. 11, 2173 (2011).CrossRefGoogle Scholar
Nicholls, W.D., Borg, M.K., Lockerby, D.A., Reese, J.M., Microfluid. Nanofluid. 12, 257 (2012).CrossRefGoogle Scholar
Whitby, M., Cagnon, L., Thanou, M., Quirke, N., Nano Lett. 8, 2632 (2008).CrossRefGoogle Scholar
Baek, Y., Kim, C., Seo, D.K., Kim, T., Lee, J.S., Kim, Y.H., Ahn, K.H., Bae, S.S., Lee, S.C., Lim, J., Lee, K., Yoon, J., J. Membr. Sci. 460, 171 (2014).CrossRefGoogle Scholar
Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A., Bocquet, L., Nature 537, 210 (2016).CrossRefGoogle Scholar
Thomas, J.A., McGaughey, A.J., Nano Lett. 8, 2788 (2008).CrossRefGoogle Scholar
Thomas, J.A., McGaughey, A.J., Phys. Rev. Lett. 102, 184502 (2009).CrossRefGoogle Scholar
Joseph, S., Aluru, N., Nano Lett. 8, 452 (2008).CrossRefGoogle Scholar
Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L., Nano Lett. 10, 4067 (2010).CrossRefGoogle Scholar
Ma, M.D., Shen, L., Sheridan, J., Liu, J.Z., Chen, C., Zheng, Q., Phys. Rev. E 83, 036316 (2011).CrossRefGoogle Scholar
Babu, J.S., Sathian, S.P., J. Chem. Phys. 134, 194509 (2011).CrossRefGoogle Scholar
Kotsalis, E., Walther, J., Koumoutsakos, P., Int. J. Multiphase Flow 30, 995 (2004).CrossRefGoogle Scholar
Wang, L., Dumont, R.S., Dickson, J.M., J. Chem. Phys. 137, 044102 (2012).CrossRefGoogle Scholar
Myers, T.G., Microfluid. Nanofluid. 10, 1141 (2011).CrossRefGoogle Scholar
Mattia, D., Calabro, F., Microfluid. Nanofluid. 13, 125 (2012).CrossRefGoogle Scholar
Batchelor, G.K., An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, UK, 2000).CrossRefGoogle Scholar
Kannam, S.K., PhD thesis, “Prediction of Fluid Slip at Graphene and Carbon Nanotube Interfaces,” Swinburne University of Technology, Melbourne, Australia (2013).Google Scholar
Navier, C., Mem. Acad. Sci. Inst. France 6, 389 (1823).Google Scholar
Hummer, G., Rasaiah, J.C., Noworyta, J.P., Nature 414, 188 (2001).CrossRefGoogle Scholar
Kannam, S.K., Todd, B.D., Hansen, J.S., Daivis, P.J., J. Chem. Phys. 136, 024705 (2012).CrossRefGoogle Scholar
Hanasaki, I., Nakatani, A., J. Chem. Phys. 124, 144708 (2006).CrossRefGoogle Scholar
Ritos, K., Mattia, D., Calabro, F., Reese, J.M., J. Chem. Phys. 140, 014702 (2014).CrossRefGoogle Scholar
Kotsalis, E.M., PhD thesis, “Multiscale Modeling and Simulation of Fullerenes in Liquids,” ETH Zürich, Switzerland (2008).Google Scholar
Bocquet, L., Barrat, J.-L., Phys. Rev. E 49, 3079 (1994).CrossRefGoogle Scholar
Kannam, S.K., Todd, B.D., Hansen, J.S., Daivis, P.J., J. Chem. Phys. 136, 244704 (2012).CrossRefGoogle Scholar
Petravic, J., Harrowell, P., J. Chem. Phys. 127, 174706 (2007).CrossRefGoogle Scholar
Huang, K., Szlufarska, I., Phys. Rev. E 89, 032119 (2014).CrossRefGoogle Scholar
Chen, S., Wang, H., Qian, T., Sheng, P., Phys. Rev. E 92, 043007 (2015).CrossRefGoogle Scholar
Sokhan, V.P., Quirke, N., Phys. Rev. E 78, 015301 (2008).CrossRefGoogle Scholar
Bhadauria, R., Aluru, N., J. Chem. Phys. 139, 074109 (2013).CrossRefGoogle Scholar
Hansen, J.S., Todd, B.D., Daivis, P.J., Phys. Rev. E 84, 016313 (2011).CrossRefGoogle Scholar
Todd, B.D., Hansen, J.S., Phys. Rev. E 78, 051202 (2008).CrossRefGoogle Scholar
Todd, B.D., Hansen, J.S., Daivis, P.J., Phys. Rev. Lett. 100, 195901 (2008).CrossRefGoogle Scholar
Travis, K.P., Todd, B.D., Evans, D.J., Phys. Rev. E 55, 4288 (1997).CrossRefGoogle Scholar
Kannam, S.K., Todd, B.D., Hansen, J.S., Daivis, P.J., J. Chem. Phys. 135, 144701 (2011).CrossRefGoogle Scholar
Wong-Ekkabut, J., Miettinen, M.S., Dias, C., Karttunen, M., Nat. Nanotechnol. 5, 555 (2010).CrossRefGoogle Scholar
Su, J., Guo, H., J. Phys. Chem. B 116, 5925 (2012).CrossRefGoogle Scholar
Bernardi, S., Todd, B.D., Searles, D.J., J. Chem. Phys. 132, 244706 (2010).CrossRefGoogle Scholar
Sokhan, V.P., Nicholson, D., Quirke, N., J. Chem. Phys. 117, 8531 (2002).CrossRefGoogle Scholar