Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-20T17:33:48.593Z Has data issue: false hasContentIssue false

Modeling Deformation and Flow of Disordered Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Disordered, glassy materials are arguably one of the least understood states of condensed matter. Yet, they are ubiquitous in everyday life (polymers, “soft” glasses such as toothpaste, various emulsions, pastes, and foams) and in demanding applications (metallic glasses). Much of what is known about this important class of materials has been the result of truly concerted experimental and molecular modeling efforts. It is now generally accepted that amorphous materials exhibit dynamic and mechanical heterogeneities, but efforts to incorporate these into truly multiscale modeling approaches have been limited. This article describes the current state of affairs, along with many of the challenges that must be met to arrive at a fundamental understanding of amorphous materials and their response to external stresses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Argon, A.S., Kuo, H. Y., Mater. Sci. Eng. 39, 101 (1979).Google Scholar
2.Falk, M.L., Langer, J.S., Phys. Rev. E 57, 7192 (1988).CrossRefGoogle Scholar
3.Varnik, F., Bocquet, L., Barrat, J.-L., Berthier, L., J. Chem. Phys. 120, 2788 (2004).CrossRefGoogle Scholar
4.Röttler, J., Robbins, M.O., Comp. Phys. Commun. 169, 177 (2005); J. Röttler, M.O. Robbins, Phys. Rev. Lett. 95, 225504 (2005).CrossRefGoogle Scholar
5.Malandro, D.L., Lacks, D.J., Phys. Rev. Lett. 81, 5576 (1998).CrossRefGoogle Scholar
6.Maloney, C., Lemaître, A., Phys. Rev. Lett. 93, 195501 (2004); C. Maloney, A. Lemaître, Phys. Rev. E 74, 0116118 (2006).Google Scholar
7.Tanguy, A., Leonforte, F., Barrat, J.-L., Eur. Phys. J. E 20, 355 (2006).Google Scholar
8.Hutnik, M., Gentile, F.T., Ludovice, P.J., Suter, U.W., Argon, A.S., Macromolecules 24, 5962 (1991).CrossRefGoogle Scholar
9.Rapold, R.F., Suter, U.W., Theodorou, D.N., Macromol. Theory Simul. 3, 19 (1994).Google Scholar
10.Argon, A.S., Bulatov, V.V., Mott, P.H., Suter, U.W., J. Rheol. 39, 377 (1995).CrossRefGoogle Scholar
11.Yoshimoto, K., Papakonstantopoulos, G.J., Lutsko, J.F., de Pablo, J.J., Phys. Rev. B 71, 184108 (2005).Google Scholar
12.Zhou, M., Proc. R. Soc. London, Ser. A 459, 2347 (2003).CrossRefGoogle Scholar
13.Yoshimoto, K., Jain, T.S., Van Workum, K.V., Nealey, P.F., de Pablo, J.J., Phys. Rev. Lett. 93, 175501 (2004).CrossRefGoogle Scholar
14.Leonforte, F., Boissiere, R., Tanguy, A., Barrat, J.L., Phys. Rev. B 72, 224206 (2005).CrossRefGoogle Scholar
15.Kochegarov, G.G., Technol. Phys. Lett. 25, 688 (1999).Google Scholar
16.Demkovicz, M., Argon, A.S., Phys. Rev. B 72, 245205 (2005).CrossRefGoogle Scholar
17.Varnik, F., Bocquet, L., Barrat, J.L., Berthier, L., Phys. Rev. Lett. 90, 095702 (2003).Google Scholar
18.Hoy, R.S., Robbins, M.O., J. Polym. Sci., Part B: Polym. Phys. 44, 3487 (2006).Google Scholar
19.Capaldi, F.M., Boyce, M.C., Rutledge, G.C., Phys. Rev. Lett. 89, 175505 (2002).CrossRefGoogle Scholar
20.Sollich, P., Phys. Rev. E 58, 738 (1997).CrossRefGoogle Scholar
21.Bulatov, V.V., Argon, A.S., Model. Simul. Mater. Sci. Eng. 2, 167 (1994).Google Scholar
22.Picard, G., Ajdari, A., Lequeux, F., Bocquet, L., Phys. Rev. E 71, 010501 (2005).Google Scholar
23.Papakonstantopoulos, G.J., Doxastakis, M., Nealey, P.F., Barrat, J.-L., de Pablo, J.J., Phys. Rev. E 75, 0318803 (2007).Google Scholar