Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-20T17:32:50.603Z Has data issue: false hasContentIssue false

Modeling Amorphous Porous Materials and Confined Fluids

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Many of the porous materials used in laboratory and industrial processes do not have simple regular or crystalline structures. This greatly complicates efforts to characterize them and to understand and optimize their performance for particular applications. This review surveys recent efforts to use simulation and modeling to better understand the structure and performance of several classes of materials, including phase-separated glasses, sol-gel–derived materials, templated silica materials, and activated carbons. Approaches to modeling these materials fall generally into two classes: reconstructions, which generate models based on experimental measurements, and mimetic simulations, which attempt to model the preparation of the materials. While significant progress has been made in many respects, both reconstructive and mimetic transferred currently available are often computationally intensive and not easily transferable between different classes of materials. Finally, since gas adsorption is used widely as a characterization tool for amorphous porous materials and is often the focus of the materials' application, recent developments in simulation and theory appropriate to the study of capillary phenomena in amorphous porous materials are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Brinker, C.J., Scherer, G.W., Sol-Gel Science (Academic Press, San Diego, 1990).Google Scholar
2Schnabel, R., Langer, P., J. Chromatogr. 544, 137 (1991).CrossRefGoogle Scholar
3Gregg, S.J., Sing, K.S.W., Adsorption, Surface Area and Porosity, 2nd edition (Academic Press, London, 1982).Google Scholar
4Rouquerol, F., Rouquerol, J., Sing, K.. Adsorption by Powders & Porous Solids (Academic Press, San Diego, 1999).Google Scholar
5Auerbach, S.M., Carrado, K.A., Dutta, P.K., Eds., Handbook of Zeolite Science and Technology (Marcel Dekker, New York, 2003).CrossRefGoogle Scholar
6Marsh, H., Rodríguez Reinoso, F., Activated Carbon (Marcel Dekker, New York, 2005).Google Scholar
7Haller, W., in Solid Phase Biochemistry, Scouten, W.H., Ed., (Wiley, New York, 1983), pp. 535597.Google Scholar
8Mayes, A.G., Mosbach, K., Trends Anal. Chem. 16 (6), 321 (1997).Google Scholar
9Shelley, S., Chem. Eng. Progress 105 (1), 6 (2009).Google Scholar
10Dronskowski, R., Computational Chemistry of Solid State Materials (Wiley-VCH Verlag, Weinheim, 2005).CrossRefGoogle Scholar
11Underwood, E.E., Quantitative Stereology (Addison-Wesley, MA, 1970).Google Scholar
12Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Particle Technology Series (Springer, New York, 2006).Google Scholar
13Brünger, A.T., Karplus, M., Petsko, G.A., Acta. Crystallogr. A 45, 50 (1989).Google Scholar
14Joshi, M.Y., PhD thesis, University of Kansas, 1974.Google Scholar
15Quiblier, J.A., J. Colloid Interface Sci. 98 (1), 84 (1984).Google Scholar
16Roberts, A.P.. Phys. Rev. E 56 (3), 3203 (1997).Google Scholar
17Yeong, C.L.Y., Torquato, S.. Phys. Rev. E 57 (1), 495 (1998).CrossRefGoogle Scholar
18Yeong, C.L.Y., Torquato, S., Phys. Rev. E 58 (1), 224 (1998).CrossRefGoogle Scholar
19Levitz, P., Adv. Colloid Interface Sci. 76–77, 71 (1998).CrossRefGoogle Scholar
20Rozman, M.G., Utz, M., Phys. Rev. E 63, 066701 (2001).CrossRefGoogle Scholar
21Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2001).Google Scholar
22Salazar, R., Gelb, L.D., Langmuir 23, 530 (2007).CrossRefGoogle Scholar
23McGreevy, R.L., Pusztai, L., Mol. Simul. 1, 359 (1988).CrossRefGoogle Scholar
24Enke, D., Janowski, F., Schwieger, W., Microporous Mesoporous Mater. 60, 19 (2003).Google Scholar
25Hood, H.P., Nordberg, M.E., U.S. Patent 2,106,744 (1938).Google Scholar
26Haller, W., Nature 206, 693 (1965).CrossRefGoogle Scholar
27Levitz, P., Ehret, G., Sinha, S.K., Drake, J.M., J. Chem. Phys. 95 (8), 6151 (1991).CrossRefGoogle Scholar
28Bentz, D.P., Garboczi, E.J., Quenard, D.A., Modell. Simul. Mater. Sci. Eng. 6 (3), 211 (1998).Google Scholar
29Pellenq, R.J.M., Rousseau, B., Levitz, P.E., Phys. Chem. Chem. Phys. 3 (7), 1207 (2001).Google Scholar
30Kikkinides, E.S., Kainourgiakis, M.E., Stefanopoulos, K.L., Mitropoulos, A.C., Stubos, A.K., Kanellopoulos, N.K., J. Chem. Phys. 112 (22), 9881 (2000).CrossRefGoogle Scholar
31Kikkinides, E.S., Kainourgiakis, M.E., Stubos, A.K., Langmuir 19, 3338 (2003).Google Scholar
32Makrodimitris, K., Papadopoulos, G.K., Philippopoulos, C., Theodorou, D.N., J. Chem. Phys. 117 (12), 5876 (2002).Google Scholar
33Cahn, J.W., J. Chem. Phys. 42 (1), 93 (1965).CrossRefGoogle Scholar
34Monette, L., Grest, G.S., Anderson, M.P., Phys. Rev. E 50 (5), 3361 (1994).Google Scholar
35MacFarland, T., Barkema, G.T., Marko, J.F., Phys. Rev. B 53 (1), 148 (1996).CrossRefGoogle Scholar
36Gelb, L.D., Gubbins, K.E., Langmuir 14, 2097 (1998).Google Scholar
37Gelb, L.D., Gubbins, K.E., Langmuir 15, 305 (1999).Google Scholar
38Elmer, T.H., in ASM Engineered Materials Handbook, Schneider, S.J. Jr.,, Ed. (ASM, Materials Park, OH, 1991), vol. 4, pp. 427432.Google Scholar
39Lu, X., Nilsson, O., Fricke, J., Pekala, R.W., J. Appl. Phys. 73, 581 (1993).CrossRefGoogle Scholar
40Meakin, P., Phys. Rev. Lett. 51 (13), 1119 (1983).CrossRefGoogle Scholar
41Hasmy, A., Foret, M., Pelous, J., Jullien, R., Phys. Rev. B 48, 9345 (1993).CrossRefGoogle Scholar
42Haard, T.M., Gervais, G., Nomura, R., Halperin, W.P., Phys. B 284–288, 289 (2000).Google Scholar
43Pierce, F., Sorensen, C.M., Chakrabarti, A., Phys. Rev. E 74, 021411 (2006).Google Scholar
44Hasmy, A., Anglaret, É., Foret, M., Pelous, J., Jullien, R., Phys. Rev. B 50, 60066016 (1994).Google Scholar
45Meakin, P., Ann. Rev. Phys. Chem. 39, 237 (1988).Google Scholar
46Meakin, P., Jullien, R., J. Chem. Phys. 89 (1), 246 (1988).Google Scholar
47Jullien, R., Hasmy, A., Anglaret, É., J. Sol-Gel Sci. Technol. 8, 819 (1997).Google Scholar
48Gelb, L.D., J. Phys. Chem. C 111, 15792 (2007).Google Scholar
49Feuston, B.P., Garofalini, S.H., J. Phys. Chem. 94, 5351 (1990).Google Scholar
50Garofalini, S.H., Martin, G., J. Phys. Chem. 98, 1311 (1994).CrossRefGoogle Scholar
51Yamahara, K., Okazaki, K., Fluid Phase Eq. 144, 449 (1998).CrossRefGoogle Scholar
52Rao, N.Z., Gelb, L.D., J. Phys. Chem. B 108, 12418 (2004).Google Scholar
53Bhattacharya, S., Kieffer, J., J. Chem. Phys. 122, 094715 (2005).Google Scholar
54Bhattacharya, S., Kieffer, J., J. Phys. Chem. C 112, 1764 (2008).Google Scholar
55Pohl, P.I., Faulon, J.-L., Smith, D.M., J. Non-Cryst. Solids 186, 349 (1995).Google Scholar
56MacElroy, J.M.D., Raghavan, K., J. Chem. Phys. 93 (3), 2068 (1990).Google Scholar
57Kaminsky, R.D., J. Chem. Phys. 95 (4), 2936 (1991).Google Scholar
58Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., Rep. Prog. Phys. 62 (12), 1573 (1999).CrossRefGoogle Scholar
59Van Tassel, P.R., Encyclopedia of Surface and Colloid Science (Taylor & Francis, 2006), pp. 271278.Google Scholar
60Quintanilla, J., Reidy, R.F., Gorman, B.P., Mueller, D.W., J. Appl. Phys. 93 (8), 4584 (2003).CrossRefGoogle Scholar
61Eschricht, N., Hoinkis, E., Mädler, F., Schubert-Bischoff, P., Röhl-Kuhn, B., J. Colloid Interface Sci. 291, 201 (2005).Google Scholar
62 Th. Steriotis, Kikkinides, E., Kainourgiakis, M., Stubos, A., Ramsay, J.D.F., Colloids Surf. A 241, 231 (2004).Google Scholar
63Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgens, J.B., Schlenker, J.L., J. Am. Chem. Soc. 114 (27), 10834 (1992).Google Scholar
64Barton, T.J., Bull, L.M., Klemperer, W.G., Loy, D.A., McEnaney, B., Misono, M., Monson, P.A., Pez, G., Scherer, G.W., Vartuli, J.C., Yaghi, O.M., Chem. Mater. 11, 2633 (1999).Google Scholar
65de, G.J.Soler-Illia, A.A., Sanchez, C., Lebeau, B., Patarin, J., Chem. Rev. 102, 4093 (2002).Google Scholar
66Wan, Y., Zhao, D., Chem. Rev. 107 (7), 2821 (2007).Google Scholar
67Feuston, B.P., Higgins, J.B., J. Phys. Chem. 98, 4459 (1994).Google Scholar
68Oumi, Y., Azuma, K., Ikeda, T., Sasaki, S., Santo, T., Studies in Surf. Sci. Catal. 141, 6976 (2002).CrossRefGoogle Scholar
69Sonwane, C.G., Jones, C.W., Ludovice, P.J., J. Phys. Chem. B 109 (49), 23395 (2005).Google Scholar
70Kleestorfer, K., Vinek, H., Jentys, A., J. Mol. Catal. A 166, 53 (2001).Google Scholar
71Palace Carvalho, A.J., Ferreira, T., Estêvão Candeias, A.J., Prates Ramalho, J.P., Theochem 729, 65 (2005).CrossRefGoogle Scholar
72Siperstein, F.R., Gubbins, K.E., Mol. Simul. 27, 339 (2001).Google Scholar
73Coasne, B., Hung, F.R., Pellenq, R.J.-M., Siperstein, F.R., Gubbins, K.E., Langmuir 22, 194 (2006).Google Scholar
74Hung, F.R., Bhattacharya, S., Coasne, B., Thommes, M., Gubbins, K.E., Adsorption 13, 425 (2007).CrossRefGoogle Scholar
75Schumacher, C., Gonzalez, J., Wright, P.A., Seaton, N.A., J. Phys. Chem. B 110 (1), 319 (2006).Google Scholar
76Bandosz, T.J., Biggs, M.J., Gubbins, K.E., Hattori, Y., Iiyama, T., Kaneko, K., Pikunic, J., Thomson, K.T., Chemistry and Physics of Carbon (Marcel Dekker, New York, 2003).Google Scholar
77Biggs, M.J., Buts, A., Mol. Simul. 32 (7), 579 (2006).Google Scholar
78O'Malley, B., Snook, I., McCulloch, D., Phys. Rev. B 57 (22), 14148 (1998).Google Scholar
79Rigden, J.S., Newport, R.J., J. Electrochem. Soc. 143 (1), 292 (1996).Google Scholar
80Faulon, J.L., Carlson, G.A., Hatcher, P.G., Energy Fuels 7, 1062 (1993).CrossRefGoogle Scholar
81Acharya, M., Strano, M.S., Mathews, J.P., Billings, J.L., Petkov, V., Subramoney, S., Foley, H.C., Philos. Mag. B 79, 1499 (1999).CrossRefGoogle Scholar
82Thomson, K.T., Gubbins, K.E., Langmuir 16, 5761 (2000).CrossRefGoogle Scholar
83Pikunic, J., Clinard, C., Cohaut, N., Gubbins, K.E., Guet, J.-M., Pellenq, R.J.-M., Rannou, I., Rouzaud, J.-N., Langmuir 19, 8565 (2003).Google Scholar
84Zetterström, P., Urbonaite, S., Lindberg, F., Delaplane, R.G., Leis, J., Svensson, G., J. Phys.: Condens. Matter 17, 3509 (2005).Google Scholar
85Petersen, T., Yarovsky, I., Snook, I., McCulloch, D.G., Opletal, G., Carbon 42, 2457 (2004).Google Scholar
86Jain, S.K., Pellenq, R.J.-M., Pikunic, J.P., Gubbins, K.E., Langmuir 22, 9942 (2006).CrossRefGoogle Scholar
87Biggs, M.J., Buts, A., Williamson, D., Langmuir 20, 5786 (2004).Google Scholar
88Kumar, A., Lobo, R.F., Wagner, N.J., Carbon 43, 3099 (2005).CrossRefGoogle Scholar
89Shi, Y., J. Chem. Phys. 128, 234707 (2008).CrossRefGoogle Scholar
90Nicholson, D., Parsonage, N.G., Computer Simulation and the Statistical Mechanics of Adsorption (Academic Press, London, 1982).Google Scholar
91Gelb, L.D., Mol. Phys. 100 (13), 2049 (2002).Google Scholar
92Gelb, L.D., Gubbins, K.E., in Fundamentals of Adsorption 7, Kaneko, K., Ed. (Elsevier, Paris, 2001), pp. 333339.Google Scholar
93Evans, R., Marini Bettolo Marconi, U., Tarazona, P., J. Chem. Phys. 84 (4), 2376 (1986).Google Scholar
94Ravikovitch, P.I., Haller, G.L., Neimark, A.V., Adv. Colloid Interface Sci. 76–77, 203 (1998).Google Scholar
95Douglas Frink, L.J., Salinger, A.G., J. Chem. Phys. 118 (16), 7466 (2003).Google Scholar
96Ustinov, E.A., Do, D.D., J. Chem. Phys. 120, 9769 (2004).CrossRefGoogle Scholar
97Siderius, D.W., Gelb, L.D., Langmuir 25, 1296 (2009).Google Scholar
98Kierlik, E., Monson, P.A., Rosinberg, M.L., Sarkisov, L., Tarjus, G., Phys. Rev. Lett. 87, 055701 (2001).Google Scholar
99Kierlik, E., Rosinberg, M.L., Tarjus, G., Viot, P., Phys. Chem. Chem. Phys. 3, 1201 (2001).Google Scholar
100De Oliveira, M.J., Griffiths, R.B., Surf. Sci. 71, 687 (1978).Google Scholar
101Woo, H.-J., Sarkisov, L., Monson, P.A., Langmuir 17, 7472 (2001).Google Scholar
102Detcheverry, F., Kierlik, E., Rosinberg, M.L., Tarjus, G., Phys. Rev. E 68, 061504 (2003).Google Scholar
103Salazar, R., Gelb, L.D., Phys. Rev. E 71 041502 (2005).Google Scholar
104Gelb, L.D., Salazar, R., Adsorption, 11 283 (2005).Google Scholar
105Monson, P.A., J. Chem. Phys. 128, 084701 (2008).Google Scholar
106Salazar, R., Gelb, L.D., Mol. Phys. 102 (9–10), 1015 (2004).Google Scholar
107Bonijoly, M., Oberlin, M., Oberlin, A., Int. J. Coal Geol. 1 (4), 283 (1982).Google Scholar