Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T10:37:57.720Z Has data issue: false hasContentIssue false

Micropower Materials Development for Wireless Sensor Networks

Published online by Cambridge University Press:  31 January 2011

Dan Steingart
Affiliation:
University of California–Berkeley, USA
Shad Roundy
Affiliation:
LV Sensors, Inc., USA
Paul K. Wright
Affiliation:
University of California–Berkeley, USA
James W. Evans
Affiliation:
University of California–Berkeley, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Subcentimeter wireless computers capable of interfacing physically with their environment and communicating with each other have progressed from concept to commercial reality in the past decade. Wireless sensor nodes are an exciting technology, as they provide a backbone to measure almost any quantity in a spatially disperse way, allowing time-synchronized correlations over meters or miles. Before these devices can be deployed to monitor and protect environments (such as grid power distribution systems, buildings, factories, or even the human body) for long periods of time, they need a power source. Environmental generation looks to be a promising method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

1.Kahn, J.M., Katz, R.H., Pister, K.S.J., Electronics Research Laboratory Research Summary (Electronics Research Laboratory, University of California-Berkeley, 1999).Google Scholar
2.Polastre, J., Szewczyk, R., Sharp, C., 2006; http://www.sentilla.com (accessed January 2008).Google Scholar
3. Renata Batteries, CR2430 3 V Lithium Battery Technical Data Sheet (Renata Batteries, 2007; www.renata.com/pdf/3vlithium/DBCR2430.04.pdf) (accessed January 2008).Google Scholar
4.Gratzel, M., MRS Bull. 30 (1), 23 (2005).CrossRefGoogle Scholar
5.Dherea, N.G., Dhere, R.G., J. Vac. Sci. Technol. A 23 (7–8), 1208 (2005).CrossRefGoogle Scholar
6.Xiofan, J., Polastre, J., Culler, D., IPSN/SPOTS 2005 (2005).Google Scholar
7.Roundy, S., Wright, P.K., Smart Mater Struct. 13 (10), 1131 (2004).CrossRefGoogle Scholar
8.Ren, K.L., Liu, Y.M., Geng, X.C., Hofmann, H.F., Zhang, Q.M.M., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 (3), 631 (2006).Google Scholar
9.Wang, Z.L., Mater. Today 10 (5), 20 (2007).CrossRefGoogle Scholar
10.Lee, C.S., Joo, J., Han, S., Koh, S.K., Sens. Actuators A, Phys. 121 (6), 373 (2005).CrossRefGoogle Scholar
11.Roundy, S., Steingart, D., Frechette, L., Wright, P., Rabaey, J., Wireless Sens. Netw., Proc. 2920, 1 (2004).Google Scholar
12.Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., Green, T.C.Sens. Actuators A, Phys. 115, 523 (2004).CrossRefGoogle Scholar
13.Beeby, S.P., Ross, N., White, N.M., Electron. Lett. 35, 2060 (Nov 11, 1999).CrossRefGoogle Scholar
14.Zai, M.H.M., Akiba, A., Goto, H., Matsumoto, M., Yeatman, E.M., Thin Solid Films 394, 97 (Aug 15, 2001).CrossRefGoogle Scholar
15.Huang, J.K., Bono, D., O'Handley, R.C., Sens. Lett. 5 (3), 105 (2007).CrossRefGoogle Scholar
16.Roundy, S., J. Intell. Mater. Syst. Struct. 16 (10), 809 (2005).CrossRefGoogle Scholar
17.Leland, E.S., Wright, P.K., Smart Mater. Struct. 15 (10), 1413 (2006).CrossRefGoogle Scholar
18.Sharuz, S.M., Mechatronics 16, 523 (2006).CrossRefGoogle Scholar
19.Evans, J.W., Schneider, M., Steingart, D., Ziegler, D., Wright, P., in Light Metals 2005, Kvande, H., Ed. (TMS, Warrendale, PA, 2005), p. 407.Google Scholar
20.Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., Evans, C.D., Solid State Ionics 135, 33 (2000).CrossRefGoogle Scholar
21.Steingart, D., Ho, C., Salminen, J., Evans, J.W., Wright, P.W., IEEE Polytronic 2007: 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Odaiba, Tokyo, Japan, 16–18 January 2007.Google Scholar
22.Ollinger, M., Kim, H., Sutto, T., Pique, A., Appl. Surf. Sci. 252, 8212 (September 30, 2006).CrossRefGoogle Scholar