Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T14:09:45.606Z Has data issue: false hasContentIssue false

Metal-Organic Frameworks for Asymmetric Catalysis and Chiral Separations

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Metal-organic frameworks (MOFs) are an interesting class of molecule-based hybrid materials built from metal-connecting points and bridging ligands. MOFs have received much attention, owing to their potential impact on many technological areas, including gas storage, separation, and heterogeneous catalysis. The modular nature of MOFs endows them with facile tunability, and as a result, properly designed MOFs can yield ideal heterogeneous catalysts with uniform active sites through judicious choice of the building blocks. Homochiral MOFs, which can be prepared by numerous approaches (construction from achiral components by seeding with a chiral single crystal, templating with coordinating chiral co-ligands, and building from metal-connecting nodes and chiral bridging ligands), represent a unique class of materials for the economical production of optically pure compounds, whether through asymmetric catalysis or enantioselective inclusion of chiral guest molecules in their porous frameworks. As such, homochiral MOFs promise new opportunities for developing chirotechnology. This contribution provides a brief overview of recent progress in the synthesis of homochiral porous MOFs and their applications in asymmetric catalysis and chiral separations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Corma, A., Chem. Rev. 97, 2373 (1997).CrossRefGoogle Scholar
2.Lee, H., Zones, S.I., Davis, M.E., Nature 425, 385 (2003).CrossRefGoogle Scholar
3.Anderson, M.W. et al., Nature 367, 347 (1994).CrossRefGoogle Scholar
4.Newsam, J.M., Treacy, M.M.J., Koetsier, W.T., de Gruyter, C.B., Proc. R. Soc. London, Ser. A 420, 375 (1988).Google Scholar
5.Batten, S.R., Robson, R., Angew. Chem. Int. Ed. 37, 1461 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
6.Munakata, M., Wu, L.P., Kuroda-Sowa, T., Adv. Inorg. Chem. 46, 173 (1999).CrossRefGoogle Scholar
7.Eddaoudi, M. et al., Acc. Chem. Res. 34, 319 (2001).CrossRefGoogle Scholar
8.Evans, O.R., Lin, W., Acc. Chem. Res. 35, 511 (2002).CrossRefGoogle Scholar
9.Lee, S. et al., Acc. Chem. Res. 38, 251 (2005).CrossRefGoogle Scholar
10.Suslick, K.S. et al., Acc. Chem. Res. 38, 283 (2005).CrossRefGoogle Scholar
11.Feng, P., Bu, X., Zheng, N., Acc. Chem. Res. 38, 293 (2005).CrossRefGoogle Scholar
12.Kitagawa, S., Kitaura, R., Noro, S.-I., Angew. Chem. Int. Ed. 43, 2334 (2004).CrossRefGoogle Scholar
13.Ezuhara, T., Endo, K., Aoyama, Y., J. Am. Chem. Soc. 121, 3279 (1999).CrossRefGoogle Scholar
14.Kepert, C.J., Prior, T.J., Rosseinsky, M.J., J. Am. Chem. Soc. 122, 5158 (2000).CrossRefGoogle Scholar
15.Bradshaw, D. et al., J. Am. Chem. Soc. 126, 6106 (2004).CrossRefGoogle Scholar
16.Dybtsev, D.N. et al., Angew. Chem. Int. Ed. 45, 916 (2006).CrossRefGoogle Scholar
17.Ranford, J.D., Vittal, J.J., Wu, D., Yang, X., Angew. Chem. Int. Ed. 38, 3498 (1999).3.0.CO;2-F>CrossRefGoogle Scholar
18.Abrahams, B.F., Moylan, M., Orchard, S.D., Robson, R., Angew. Chem. Int. Ed. 42, 1848 (2003).CrossRefGoogle Scholar
19.Sheldrick, W.S., Acta Crystallogr. B37, 1820 (1981).CrossRefGoogle Scholar
20.Xiong, R.-G. et al., Angew. Chem. Int. Ed. 40, 4422 (2001).3.0.CO;2-G>CrossRefGoogle Scholar
21.Aoki, K., Saenger, W., J. Inorg. Biochem. 19, 269 (1983).CrossRefGoogle Scholar
22.Cui, Y., Lee, S.J., Lin, W., J. Am. Chem. Soc. 125, 6014 (2003).CrossRefGoogle Scholar
23.Kesanli, B. et al., Angew. Chem. Int. Ed. 44, 72 (2005).CrossRefGoogle Scholar
24.Ngo, H.L., Lin, W., J. Am. Chem. Soc. 124, 14298 (2002).CrossRefGoogle Scholar
25.Wu, C.-D., Lin, W., Angew. Chem. Int. Ed. 44, 1958 (2005).CrossRefGoogle Scholar
26.Seo, J.S. et al., Nature 404, 982 (2000).CrossRefGoogle Scholar
27.Wu, C.-D., Hu, A., Zhang, L., Lin, W., J. Am. Chem. Soc. 127, 8940 (2005).CrossRefGoogle Scholar
28.Wu, C.-D., Lin, W., Angew. Chem. Int. Ed. 46, 1075 (2007).CrossRefGoogle Scholar
29.Cho, S.-H. et al., Chem. Commun., 2563 (2006).CrossRefGoogle Scholar
30.Hu, A., Ngo, H.L., Lin, W., Angew. Chem. Int. Ed. 42, 6000 (2003).CrossRefGoogle Scholar
31.Hu, A., Ngo, H.L., Lin, W., J. Am. Chem. Soc. 125, 11490 (2003).CrossRefGoogle Scholar
32.Evans, O.R., Ngo, H.L., Lin, W., J. Am. Chem. Soc. 123, 10395 (2001).CrossRefGoogle Scholar