Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T23:20:18.589Z Has data issue: false hasContentIssue false

Metal–organic framework photophysics: Optoelectronic devices, photoswitches, sensors, and photocatalysts

Published online by Cambridge University Press:  07 November 2016

Ekaterina A. Dolgopolova
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, USA; [email protected]
Natalia B. Shustova
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, USA; [email protected]
Get access

Abstract

The development of new hierarchical materials capable of efficient energy transfer along a predesigned pathway will boost various applications, ranging from organic photovoltaics to catalytic systems. Due to their exceptional tunability and structural diversity, metal–organic frameworks (MOFs) offer a unique platform to study and model directional energy-transfer processes and, thereby, an efficient path for energy utilization. This article summarizes the latest advances in MOF applications in the fields of optoelectronics, photoswitching, sensing, and photocatalysis, for which development is highly dependent on fundamental studies of MOF photophysics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M., Science 341, 974 (2013).Google Scholar
Zhou, H.-C., Long, J.R., Yaghi, O.M., Chem. Rev. 112, 673 (2012).Google Scholar
He, Y., Zhou, W., Qian, G., Chen, B., Chem. Soc. Rev. 43, 5657 (2014).Google Scholar
Mason, J.A., Veenstra, M., Long, J.R., Chem. Sci. 5, 32 (2014).Google Scholar
Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.-H., Long, J.R., Chem. Rev. 112, 724 (2012).Google Scholar
Zhai, Q.-G., Bu, X., Mao, C., Zhao, X., Feng, P., J. Am. Chem. Soc. 138, 2524 (2016).Google Scholar
Falcaro, P., Ricco, R., Doherty, C.M., Liang, K., Hill, A.J., Styles, M.J., Chem. Soc. Rev. 43, 5513 (2014).Google Scholar
Stavila, V., Talin, A.A., Allendorf, M.D., Chem. Soc. Rev. 43, 5994 (2014).Google Scholar
Cui, Y., Yue, Y., Qian, G., Chen, B., Chem. Rev. 112, 1126 (2012).Google Scholar
Zhang, X., Wang, W., Hu, Z., Wang, G., Uvdal, K., Coord. Chem. Rev. 284, 206 (2015).Google Scholar
Hu, Z., Deibert, B.J., Li, J., Chem. Soc. Rev. 43, 5815 (2014).Google Scholar
Kuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.-C., Coord. Chem. Rev. 253, 3042 (2009).Google Scholar
Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Chem. Rev. 112, 1105 (2012).Google Scholar
Zhao, D., Cui, Y., Yang, Y., Qian, G., CrystEngComm 18, 3746 (2016).Google Scholar
Hu, Z., Lustig, W.P., Zhang, J., Zheng, C., Wang, H., Teat, S.J., Gong, Q., Rudd, N.D., Li, J., J. Am. Chem. Soc. 137, 16209 (2015).Google Scholar
Shustova, N.B., Cozzolino, A.F., Reineke, S., Baldo, M., Dincă, M., J. Am. Chem. Soc. 135, 13326 (2013).Google Scholar
Nagarkar, S.S., Saha, T., Desai, A.V., Talukdar, P., Ghosh, S.K., Sci. Rep. 4, 7053, (2014).Google Scholar
Duke, A.S., Dolgopolova, E.A., Galhenage, R.P., Ammal, S.C., Heyden, A., Smith, M.D., Chen, D.A., Shustova, N.B., J. Phys. Chem. C 119, 27457 (2015).Google Scholar
Xie, W., Zhang, S.-R., Du, D.-Y., Qin, J.-S., Bao, S.-J., Li, J., Su, Z.-M., He, W.-W., Fu, Q., Lan, Y.-Q., Inorg. Chem. 54, 3290 (2015).Google Scholar
Li, S.-M., Zheng, X.-J., Yuan, D.-Q., Ablet, A., Jin, L.-P., Inorg. Chem. 51, 1201 (2012).Google Scholar
Gallis, D.F.S., Rohwer, L.E.S., Rodriguez, M.A., Nenoff, T.M., Chem. Mater. 26, 2943 (2014).Google Scholar
Sava, D.F., Rohwer, L.E.S., Rodriguez, M.A., Nenoff, T.M., J. Am. Chem. Soc. 134, 3983 (2012).Google Scholar
Yang, Q.-Y., Pan, M., Wei, S.-C., Li, K., Du, B.-B., Su, C.-Y., Inorg. Chem. 54, 5707 (2015).Google Scholar
Liu, Z.-F., Wu, M.-F., Wang, S.-H., Zheng, F.-K., Wang, G.-E., Chen, J., Xiao, Y., Wu, A.-Q., Guo, G.-C., Huang, J.-S., J. Mater. Chem. C 1, 4634 (2013).Google Scholar
Sun, C.-Y., Wang, X.-L., Zhang, X., Qin, C., Li, P., Su, Z.-M., Zhu, D.-X., Shan, G.-G., Shao, K.-Z., Wu, H., Li, J., Nat. Commun. 4, 2717 (2013).Google Scholar
Cui, Y., Zhu, F., Chen, B., Qian, G., Chem. Commun. 51, 7420 (2015).Google Scholar
Lian, X., Zhao, D., Cui, Y., Yang, Y., Qian, G., Chem. Commun. 51, 17676 (2015).Google Scholar
Zhao, S.-N., Li, L.-J., Song, X.-Z., Zhu, M., Hao, Z.-M., Meng, X., Wu, L.-L., Feng, J., Song, S.-Y., Wang, C., Zhang, H.-J., Adv. Funct. Mater. 25, 1463 (2015).Google Scholar
Cadiau, A., Brite, C.D.S., Costa, P.M.F.J., Ferreira, R.A.S., Rocha, J., Carlos, L.D., ACS Nano 7, 7213 (2013).CrossRefGoogle Scholar
Liu, X., Akerboom, S., de Jong, M., Mutikainen, I., Tanase, S., Meijerink, A., Bouwman, E., Inorg. Chem. 54, 11323 (2015).Google Scholar
Cui, Y., Xu, H., Yue, Y., Guo, Z., Yu, J., Chen, Z., Gao, J., Yang, Y., Qian, G., Chen, B., J. Am. Chem. Soc. 134, 3979 (2012).Google Scholar
Leong, K., Foster, M.E., Wong, B.M., Spoerke, E.D., Van Gough, D., Deaton, J.C., Allendorf, M.D., J. Mater. Chem. A 2, 3389 (2014).Google Scholar
Zhang, T., Lin, W., Chem. Soc. Rev. 43, 5982 (2014).Google Scholar
Kent, C.A., Mehl, B.P., Ma, L., Papanikolas, J.M., Meyer, T.J., Lin, W.J., J. Am. Chem. Soc. 132, 12767 (2010).Google Scholar
Kent, C.A., Liu, D., Ma, L., Papanikolas, J.M., Meyer, T.J., Lin, W.J., J. Am. Chem. Soc. 133, 12940 (2011).Google Scholar
Son, H.-J., Jin, S., Patwardhan, S., Wezenberg, S.J., Jeong, N.C., So, M., Wilmer, C.E., Sarjeant, A.A., Schatz, G.C., Snurr, R.Q., Farha, O.K., Wiederrecht, G.P., Hupp, J.T.J., J. Am. Chem. Soc. 135, 862 (2013).Google Scholar
Narayan, T.C., Miyakai, T., Seki, S., Dincă, M., J. Am. Chem. Soc. 134, 12932 (2012).Google Scholar
So, M.C., Wiederrecht, G.P., Mondloch, J.E., Hupp, J.T., Farha, O.K., Chem. Commun. 51, 3501 (2015).Google Scholar
Nasalevich, M.A., van der Veen, M., Kapteijn, F., Gascon, J., CrystEngComm 16, 4919 (2014).Google Scholar
Li, Y., Xu, H., Ouyang, S., Ye, J., Phys. Chem. Chem. Phys. 18, 7563 (2016).Google Scholar
Wang, J.-L., Wang, C., Lin, W., ACS Catal. 2, 2630 (2012).Google Scholar
Corma, A., Garcia, H., Chem. Commun. 1443 (2004), doi:10.1039/B400147H.Google Scholar
Hisatomi, T., Kubota, J., Domen, K., Chem. Soc. Rev. 43, 7520 (2014).Google Scholar
Li, X., Yu, J., Jaroniec, M., Chem. Soc. Rev. 45, 2603 (2016).Google Scholar
Wang, C., de Krafft, K.E., Lin, W., J. Am. Chem. Soc. 134, 7211 (2012).Google Scholar
Williams, D.E., Rietman, J.A., Maier, J.M., Tan, R., Greytak, A.B., Smith, M.D., Krause, J.A., Shustova, N.B., J. Am. Chem. Soc. 136, 11886 (2014).Google Scholar
Sun, J.-K., Cai, L.-X., Chen, Y.-J., Li, Z.-H., Zhang, J., Chem. Commun. 47, 6870 (2011).Google Scholar
Wade, C.R., Li, M., Dincă, M., Angew. Chem. Int. Ed. 52, 13377 (2013).Google Scholar