Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T13:45:54.519Z Has data issue: false hasContentIssue false

Metalorganic Deposition (MOD): A Nonvacuum, Spin-on, Liquid-Based, Thin Film Method

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

There are many methods of depositing thin film materials: thermal evaporation, sputtering, electron or laser beam evaporation, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE). A good survey of many of the deposition methods appears in the 1988 November and December issues of the MRS BULLETIN. One method not included in that survey, however, is metalorganic deposition (MOD), a powerful method for depositing a variety of materials.

Metalorganic deposition is not to be confused with metalorganic chemical vapor deposition (MOCVD), which is a gaseous deposition method. MOD is a nonvacuum, liquid-based, spin-on method of depositing thin films. A suitable organic precursor, dissolved in solution, is dispensed onto a substrate much like photoresist. The substrate is spun at a few thousand revolutions per minute, removing the excess fluid, driving off the solvent, and uniformly coating the substrate surface with an organic film a few microns thick. The soft metalorganic film is then pyrolyzed in air, oxygen, nitrogen, or other suitable atmosphere to convert the metalorganic precursors to their constituent elements, oxides, or other compounds. Figure 1 shows a schematic of the deposition process including a prebake and annealing (if necessary).

Type
Technical Features
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mantese, J.V., Hamdi, A.H., Micheli, A.L., Chen, Y.L., Wong, C.A., Johnson, J.L., Karmarkar, M.M., and Padmanabhan, K.R., Appl. Phys. Lett. 52 (1988) p. 1631.CrossRefGoogle Scholar
2.Hamdi, A.H., Mantese, J.V., Micheli, A.L., Laugal, R.C.O., Dungan, D.F., Zhang, Z.H., and Padmanabhan, K.R., Appl. Phys. Lett. 51 (1987) p. 2152.CrossRefGoogle Scholar
3.Maruyama, T. and Kitamura, K., Jpn. J. Appl. Phys. 28 (1989) p. L312.CrossRefGoogle Scholar
4.Vest, G.M. and Vest, R.W., Intl. J. Hybrid Micro. 2 (1982) p. 62.Google Scholar
5.Sabo, C.J., Vest, G.M., Singaram, S., and Mis, D., Proc. Intl. Soc. Hybrid Micro. Symp., Nov. 11–14, Anaheim, CA 59 (1985).Google Scholar
6.Vest, R.W. and Xu, J., IEEE Trans. UFFC 35 (1988) p. 711.CrossRefGoogle Scholar
7.Xu, J., Shaikh, A.S., and Vest, R.W., Thin Solid Films 161 (1988) p. 273.CrossRefGoogle Scholar
8.Xu, J.J., Shaikh, A.S., and Vest, R.W., IEEE Trans. UFFC 36 (1989) p. 307.CrossRefGoogle Scholar
9.Hamdi, A.H., Mantese, J.V., Micheli, A.L., Waldo, R.A., Chen, Y.L., Wong, C.A., Karmarkar, M.M., and Padmanabhan, K.R., J. Mater. Res. 3 (1988) p. 1311.CrossRefGoogle Scholar
10.Hamdi, A.H., Mantese, J.V., Micheli, A.L., Waldo, R.A., Chen, Y.L., and Wong, C.A., Appl. Phys. Lett. 53 (1988) p. 435.CrossRefGoogle Scholar
11. Strem Chemicals, Newburyport, MA.Google Scholar
12. Engelhard Industries, Newark, NJ.Google Scholar
13.Vest, G.M. and Singaram, S.,in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Chen, Y., Kingery, W.D., and Stokes, R.J. (Mat. Res. Soc. Proc. 60, Pittsburgh, PA, 1986) p. 35.Google Scholar
14.Gaskell, D.R., Introduction to Metallurgical Thermodynamics, 2nd Ed. (McGraw-Hill, New York, 1981) p. 286292.Google Scholar
15.Matsuba, I. and Matsumota, K., IEEE Trans. on Elec. Dev. 33 (1986) p. 1263.CrossRefGoogle Scholar
16.Mantese, J.V., Catalan, A.B., Hamdi, A.H., and Micheli, A.L., Appl. Phys. Lett. 52 (1988) p. 1741.CrossRefGoogle Scholar
17.Harriot, L.T., Cummings, K.D., Gross, M.E., and Brown, W.L., Appl. Phys. Lett. 49 (1986) p. 1661.CrossRefGoogle Scholar
18.Ohmura, Y., Shiokawa, T., Toyoda, K., and Namba, S., Appl. Phys. Lett. 51 (1987) p. 1500.CrossRefGoogle Scholar
19.Mantese, J.V., Catalan, A.B., Mance, A.M., Hamdi, A.H., Micheli, A.L., Sell, J.A., and Meyer, M.S., Appl. Phys. Lett. 53 (1988) p. 1335.CrossRefGoogle Scholar
20.Krauss, T., Speth, A., Oprysko, M.M., Fan, B., and Grebe, K., Appl. Phys. Lett. 53 (1988) p. 947.CrossRefGoogle Scholar
21.Beeson, K.W. and Clements, N.S., Appl. Phys. Lett. 53 (1988) p. 547.CrossRefGoogle Scholar
22.Gross, M.E., Appelbaum, A., and Gallagher, P.K., J. Appl. Phys. 61 (1987) p. 1628.CrossRefGoogle Scholar
23.Gupta, A. and Jagannathan, R., Appl. Phys. Lett. 51 (1987) p. 2254.CrossRefGoogle Scholar
24.Mantese, J.V., Catalan, A.B., Hamdi, A.H., Micheli, A.L., and Studer-Rabeler, K., Appl. Phys. Lett. 53 (1988) p. 526.CrossRefGoogle Scholar
25.Craighead, H.G. and Schiavone, L.M., Appl. Phys. Lett. 48 (1986) p. 1748.CrossRefGoogle Scholar
26.Serafino, A.J., Coyle, R.J.. Wolk, G.L., Doll, R.F., Semi. Int. 132 (June 1988).Google Scholar
27.Gross, M.E., Fisanick, G.J., Gallagher, P.K., Schnoes, K.J., and Fennell, M.D., Appl. Phys. Lett. 47 (1985) p. 923.CrossRefGoogle Scholar
28.Fisanick, G.J., Gross, M.E., Hopkins, J.B., Fennell, M.D., Schnoes, K.J., and Katzir, A., J. Appl. Phys. 57 (1985) p. 1139.CrossRefGoogle Scholar
29.Micheli, A.L., Chang, S., and Hicks, D.B., Ceram. Eng. Sci. Proc. 8 (1987) p. 1095.Google Scholar