Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T21:11:41.630Z Has data issue: false hasContentIssue false

Metal nanogrids, nanowires, and nanofibers for transparent electrodes

Published online by Cambridge University Press:  20 October 2011

Liangbing Hu
Affiliation:
Department of Materials Science and Engineering at the University of Maryland at College Park, MD 20742, USA; [email protected]
Hui Wu
Affiliation:
Department of Materials Science and Engineering, Stanford University, CA 94305, USA; [email protected]
Yi Cui
Affiliation:
Department of Materials Science and Engineering, Stanford University, CA 94305, USA; [email protected]
Get access

Abstract

Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hecht, D.S., Hu, L.B., Irvin, G., Adv. Mater. 23, 1482 (2011).CrossRefGoogle Scholar
2.Hu, L., Hecht, D.S., Gruner, G., Nano Lett. 4, 2513 (2004).CrossRefGoogle Scholar
3.Rowell, M.W., McGehee, M.D., Energy Environ. Sci. 4, 131 (2010).CrossRefGoogle Scholar
4.Koishiyev, G.T., Sites, J.R., Sol. Energy Mater. Sol. Cells 93, 350 (2009).CrossRefGoogle Scholar
5.Wu, Z.C., Chen, Z.H., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., Science 305, 1273 (2004).CrossRefGoogle Scholar
6.Hu, L.B., Hecht, D.S., Gruner, G., Chem. Rev. 110, 5790 (2011).Google Scholar
7.Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S., Nat. Nanotechnol. 5, 574 (2010).CrossRefGoogle Scholar
8.Wassei, J.K., Kaner, R.B., Mater. Today 13, 52 (2010).CrossRefGoogle Scholar
9.O’Connor, B., Haughn, C., An, K.H., Pipe, K.P., Shtein, M., Appl. Phys. Lett. 93 (2008).Google Scholar
10.Ghosh, D.S., Martinez, L., Giurgola, S., Vergani, P., Pruneri, V., Opt. Lett. 34, 325 (2009).CrossRefGoogle Scholar
11.Kang, M.G., Park, H.J., Ahn, S.H., Xu, T., Guo, L.J., IEEE J. Sel. Top. Quantum Electron. 16, 1807 (2010).CrossRefGoogle Scholar
12.Catrysse, P.B., Fan, S.H., Nano Lett. 10, 2944 (2010).CrossRefGoogle Scholar
13.Lee, J.Y., Connor, S.T., Cui, Y., Peumans, P., Nano Lett. 8, 689 (2008).CrossRefGoogle Scholar
14.Park, J.M., Kim, T.G., Constant, K., Ho, K.M., J. Micro/Nanolithogr. MEMS MOEMS 10 (2011).Google Scholar
15.Ahn, S.H., Guo, L.J., Nano Lett. 10, 4228 (2010).CrossRefGoogle Scholar
16.Ahn, S.H., Guo, L.J., ACS Nano 3, 2304 (2009).CrossRefGoogle Scholar
17.Kang, M.G., Guo, L.J., J. Vac. Sci. Technol., B 25, 2637 (2007).CrossRefGoogle Scholar
18.Hu, L.B., Kim, H.S., Lee, J.Y., Peumans, P., Cui, Y., ACS Nano 4, 2955 (2010).CrossRefGoogle Scholar
19.De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., Coleman, J.N., ACS Nano 3, 1767 (2009).CrossRefGoogle Scholar
20.Chang, Y., Lye, M.L., Zeng, H.C., Langmuir 21, 3746 (2005).CrossRefGoogle Scholar
21.Rathmell, A.R., Bergin, S.M., Hua, Y.L., Li, Z.Y., Wiley, B.J., Adv. Mater. 22, 3558 (2010).CrossRefGoogle Scholar
22.Wu, H., Hu, L.B., Rowell, M.W., Kong, D.S., Cha, J.J., McDonough, J.R., Zhu, J., Yang, Y.A., McGehee, M.D., Cui, Y., Nano Lett. 10, 4242 (2010).CrossRefGoogle Scholar
23.Li, D., Xia, Y.N., Adv. Mater. 16, 1151 (2004).CrossRefGoogle Scholar
24.Kang, M.G., Xu, T., Park, H.J., Luo, X.G., Guo, L.J., Adv. Mater. 22, 4378 (2010).CrossRefGoogle Scholar