Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T13:09:52.455Z Has data issue: false hasContentIssue false

Meso- and Macroporous Ceramics by Phase Separation and Reactive Sintering Methods

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Controlled pore glasses are formed through selective etching of one phase of a spinodally decomposed borosilicate glass, an old technique that is the basis of the porous Vycor synthesis technique developed in the 1920s. This technique is receiving renewed attention as these glasses find new applications as substrates for biosensing, bioreactors, precise filtration, and chromatography. Analogous techniques are being applied to crystalline ceramics, such as directed cooling of ZrO2/MgO and MgAl2O4/Al2O3 eutectics to drive phase separation with the subsequent dissolution of one phase. Pyrolytic reactive sintering is a combination of the phase separation method and the reactive sintering method to obtain a 3D porous structure network. For example, dolomite (CaMg[CO3]2) and ZrO2 yield a uniformly porous CaZrO3/MgO composite that utilizes evolved CO2 as a “pore-forming agent.” This article gives an overview of recent developments on meso- and macroporous ceramics based on phase separation and reactive sintering technologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Enke, D., Janowski, F., Schwieger, W., Microporous Mesoporous Mater. 60, 19 (2003).CrossRefGoogle Scholar
2Nakanishi, K., J. Porous Mater. 4, 67 (1997).CrossRefGoogle Scholar
3Li, X.M., Yin, X.W., Zhang, L.T., Cheng, L.F., Qi, Y.C., Mater. Sci. Eng. A. 500, 63 (2009).Google Scholar
4Suzuki, Y., Morgan, P.E.D., Ohji, T., J. Am. Ceram. Soc. 83, 2091 (2000).CrossRefGoogle Scholar
5Thompson, G.E., Thin Solid Films 297, 192 (1997).Google Scholar
6Chen, L., Peng, X., Huang, Y., Li, L., Li, X., Key Eng. Mater. 368–372, 697 (2008).CrossRefGoogle Scholar
7Tang, F.Q., Fudouzi, H., Uchikoshi, T., Sakka, Y., J. Eur. Ceram. Soc. 24, 341 (2004).CrossRefGoogle Scholar
8Bosch Ojeda, C., Sánchez Rojas, F., Cano Pavón, J.M., Spectroscopy Lett. 41, 204 (2008).CrossRefGoogle Scholar
9Kojima, T., Fukai, T., Uekawa, N., Kakegawa, K., J. Ceram. Soc. Jpn. 116, 1241 (2008).CrossRefGoogle Scholar
10Wang, W., Kirihara, S., Miyamoto, Y., Jiny, Z., J. Am. Ceram. Soc. 91, 1194 (2008).Google Scholar
11Gelb, L.D., Gubbins, K.E., Langmuir 14, 2097 (1998).CrossRefGoogle Scholar
12Martin, A.F., Nieman, T.A., Analytica Chimica Acta 281, 475 (1993).Google Scholar
13Xavier, M.P., Vallejo, B., Marazuela, M.D., Moreno-Bondi, M.C., Baldini, F., Falai, A., Biosens. Bioelectronics 14, 895 (2000).CrossRefGoogle Scholar
14Mulchandani, P., Chen, W., Mulchandani, A., Environmental Sci. Tech. 35, 2562 (2001).CrossRefGoogle Scholar
15Girelli, A.M., Mattei, E., Messina, A., Papaleo, D., Sens. Actuators, B 125, 48 (2007).CrossRefGoogle Scholar
16Azevedo, A.M., Cabral, J.M.S., Gibson, T.D., Fonseca, L.P., J. Molecular Catal. B 28, 45 (2004).Google Scholar
17Zadaka, D., Mishael, Y.G., Polubesova, T., Serban, C., Nir, S., Applied Clay Sci. 36, 174 (2007).CrossRefGoogle Scholar
18Huttner, W.B., Schiebler, W., Greengard, P., De Camilli, P., J. Cell Biology. 96, 1374 (1983).Google Scholar
19Deville, S., Adv. Eng. Mater. 10, 155 (2008).CrossRefGoogle Scholar
20Kondoh, S., Iwamoto, Y., Kikuta, K., Hirano, S., J. Am. Ceram. Soc. 82, 209 (1999).Google Scholar
21Otomo, J., Wang, S.Q., Takahashi, H., Nagamoto, H., J. Membrane Sci. 279, 256 (2006).CrossRefGoogle Scholar
22Otomo, J., Kurokawa, R., Takahashia, H., Nagamoto, H., Vacuum 81, 1003 (2007).Google Scholar
23Zhang, S.C., Zhang, C., Yang, H.P., Zhu, Y.F., J. Solid State Chem. 179, 873 (2006).Google Scholar
24Suzuki, Y., Yamada, T., Sakakibara, S., Ohji, T., Ceram. Eng. Sci. Proc. 21[4], 19 (2000).Google Scholar
25Ueno, S., Awano, M., Jayaseelan, D.D., Kondo, N., Ohji, T., Kanzaki, S., J. Ceram. Soc. Jpn. 111, 611 (2003).Google Scholar
26Lee, J.H., Yoshikawa, A., Fukuda, T., J. Eur. Ceram. Soc. 25, 1351 (2005).Google Scholar
27Waku, Y., Nakagawa, N., Ohtsubo, H., Ohsora, Y., Kohtoku, Y., J. Jpn. Inst. Metals 59, 71 (1995).Google Scholar
28Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., Kohtoku, Y., Nature 389, 49 (1997).CrossRefGoogle Scholar
29Nakajima, H., Hyun, S.K., Ohashi, K., Ota, K., Murakami, K., Colloids Surf. A 179, 209 (2001).Google Scholar
30Nakajima, H., Ikeda, T., Hyun, S.K., Adv. Eng. Mater. 6, 377 (2004).Google Scholar
31Ueno, S., Lin, L.M., Hyun, S.K., Nakajima, H., Mater. Trans. 47, 2167 (2006).Google Scholar
32Ueno, S., Lin, L.M., Nakajima, H., J. Am. Ceram. Soc. 91, 223 (2008).CrossRefGoogle Scholar
33Fukasawa, T., Ando, M., Ohji, T., Kanzaki, S., J. Am. Ceram. Soc. 84, 230 (2001).Google Scholar
34Fukasawa, T., Deng, Z.Y., Ando, M., Ohji, T., J. Ceram. Soc. Jpn. 109, 1035 (2001).Google Scholar
35Fukasawa, T., Deng, Z.Y., Ando, M., Ohji, T., Kanzaki, S., J. Am. Ceram. Soc. 85, 2151 (2002).CrossRefGoogle Scholar
36Suzuki, Y., Awano, M., Kondo, N., Ohji, T., J. Ceram. Soc. Jpn. 109, 79 (2001).Google Scholar
37Suzuki, Y., Kondo, N., Ohji, T., J. Ceram. Soc. Jpn. 109, 205 (2001).Google Scholar
38Suzuki, Y., Kondo, N., Ohji, T., J. Am. Ceram. Soc. 86, 1128 (2003).Google Scholar
39Suzuki, Y., Kondo, N., Ohji, T., Morgan, P.E.D., Int. J. Appl. Ceram. Tech. 1, 76 (2004).Google Scholar
40Suzuki, Y., Tsukatsune, M., Yoshikawa, S., Morgan, P.E.D., J. Am. Ceram. Soc. 88, 3283 (2005).Google Scholar
41Serena, S., Caballero, A., Sainz, M.A., Conver, P., Campo, J., Turrillas, X., J. Am. Ceram. Soc. 87, 1706 (2004).Google Scholar
42Serena, S., Sainz, M.A., Caballero, A., J. Am. Ceram. Soc. 87, 2268 (2004).CrossRefGoogle Scholar
43Rajamathi, M., Thimmaiah, S., Morgan, P.E.D., Seshadri, R., J. Mater. Chem. 11, 2489 (2001).Google Scholar
44Panda, M., Rajamathi, M., Seshadri, R., Chem. Mater. 14, 4762 (2002).CrossRefGoogle Scholar
45Morioka, H., Tagaya, H., Karasu, M., Kadokawa, J., Chiba, K., Inorg. Chem. 38, 4211 (1999).CrossRefGoogle Scholar
46Toberer, E.S., Weaver, J.C., Ramesha, K., Seshadri, R., Chem. Mater. 16, 2194 (2004).CrossRefGoogle Scholar
47Toberer, E.S., Joshi, A., Seshadri, R., Chem. Mater. 17, 2142 (2005).Google Scholar
48Zhu, X.W., Zhou, Y., Hirao, K., J. Am. Ceram. Soc. 88, 1353 (2005).Google Scholar