Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:19:18.614Z Has data issue: false hasContentIssue false

Membranes for Hydrogen Purification: An Important Step toward a Hydrogen-Based Economy

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Production of pure molecular hydrogen is essential to the realization of the proposed “hydrogen economy” that could ultimately provide hydrogen as a clean, renewable source of energy; eliminate the industrialized world's dependence on petroleum; and reduce the generation of greenhouse gases linked to global warming. A crucial step in obtaining pure hydrogen is separating it from other gaseous compounds—mainly CO2—that often accompany hydrogen in industrial chemical reactions. Advanced membrane technology may prove to be the key to the successful, economical production of molecular hydrogen.

Size-sieving glassy polymer membranes can separate H2 on the basis of its small size. Alternatively, reverse-selective rubbery polymers can expedite the passage and, hence, removal of CO2 due to its relatively high solubility in such membranes alone or in conjunction with dissociative chemical reactions. Transition-metal membranes and their alloys can adsorb H2 molecules, dissociate the molecules into H atoms for transport through interstitial sites, and subsequently recombine the H atoms to form molecular H2 again on the opposite membrane side. Microporous amorphous silica and zeolite membranes comprising thin films on a multilayer porous support exhibit good sorption selectivity and high diffusion mobilities for H2, leading to high H2 fluxes. Finally, carbon-based membranes, including carbon nanotubes, may be viable for H2 separation on the basis of selective surface flow and molecular sieving. A wide variety of materials challenges exist in hydrogen purification, and the objective of this issue of MRS Bulletin is to address those challenges and their potential solutions from basic principles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

References

1 Hydrogen, Fuel Cells & Infrastructure Technologies Program. Multi-Year Research, Development and Demonstration Plan. Planned Program Activities for 2003-2010 (U.S. Department of Energy, Washington, DC, 2003).Google Scholar
2 Chalk, S.G. and Romm, J.J. Chem. & Eng. News 83 (34) (2005) p.30.Google Scholar
3 The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, Committee on Alternatives and Strategies for Future Hydrogen Production and Use, National Research Council, National Academy of Engineering (National Academy Press, Washington, DC, 2005).Google Scholar
4 Kirk-Othmer Concise Encyclopedia of Chemical Technology, 4th ed. (John Wiley & Sons, New York, 1999).Google Scholar
5“Gas Processing 2002,” Hydrocarbon Process. (May 2002).Google Scholar
6“Petrochemical Processes 2003,” Hydrocarbon Process. (March 2003).Google Scholar
7 Meyers, R.A. Handbook of Petroleum Refining Processes, 3rd ed. (McGraw-Hill, New York, 2004).Google Scholar
8 Wittcoff, H.A. Reuben, B.G. and Plotkin, J.S. Industrial Organic Chemicals, 2nd ed. (John Wiley & Sons, Hoboken, NJ, 2004).CrossRefGoogle Scholar
9 Prausnitz, J.M. Lichtenthaler, R.N. and Azevedo, E.G. de, Molecular Thermodynamics of Fluid Phase Equilibria, 3rd ed. (Prentice Hall, Engle-wood Cliffs, NJ, 1999).Google Scholar
10 Ritter, J.A. and Ebner, A.D. DOE/ITP/ Chemicals & Chemicals Industry Vision 2020 Technology Partnership (December 2005); J.A. Ritter and A.D. Ebner Sep. Sci. Technol (2006) submitted.Google Scholar
11 Robeson, L. J. Membr. Sci. 62 (1991) p. 165.Google Scholar
12 Freeman, B.D. Macromolecules 32 (1999) p.375.CrossRefGoogle Scholar
13 Orme, C.J. Stone, M.L. Benson, M.T. and Peterson, E.S. Sep. Sci. Technol. 38 (2003) p.3225.Google Scholar
14 Wang, Z.G. Chen, T.L. and Xu, J.P. Macromolecules 33 (2000) p.5672.CrossRefGoogle Scholar
15 Pesiri, D.R. Jorgensen, B. and Dye, R.C. J.Membr. Sci. 218 (2003) p.11.CrossRefGoogle Scholar
16 Langsam, M. and Laciak, D.V. J. Polym. Sci., Part A: Polym. Chem. 38 (2000) p.1951.Google Scholar
17 Yong, H.H. Park, N.C. Kang, Y.S. Won, J. and Kim, W.N. J. Membr. Sci. 188 (2001) p. 151.Google Scholar
18 Smaihi, M. Schrotter, J.C. Lesimple, C. Prevost, I. and Guizard, C. J. Membr. Sci. 161 (1999) p.157.Google Scholar
19 Feng, X.S. Shao, P.H. R.Huang, Y.M. Jiang, G.L. and Xu, R.X. Sep. Purif. Technol. 27 (2002) p.211.CrossRefGoogle Scholar
20 Ye, Z. Chen, Y. Li, H. He, G. and Deng, M. Mater. Chem. & Phys. 94 (2005) p.288.Google Scholar
21 Hradil, J. Krystl, V. Hrabanek, P. Bernauer, B. and Kocirik, M. React. Funct. Polym. 61 (2004) p.3.Google Scholar
22 Orme, C.J. Harrup, M.K. Luther, T.A. Lash, R.P. Houston, K.S. Weinkauf, D.H. and Stewart, F.F. J.Membr. Sci. 186 (2001) p.249.Google Scholar
23 Patel, N.P. Miller, A.C. and Spontak, R.J. Adv. Mater. 15 (2003) p. 729; N.P. Patel A.C. Miller and R.J. Spontak Adv. Funct. Mater. 14 (2004) p.699.CrossRefGoogle Scholar
24 Patel, N.P. Aberg, C.M. Sanchez, A.M. Capracotta, M.D. Martin, J.D. and Spontak, R.J. Polymer 45 (2004) p.5941.CrossRefGoogle Scholar
25 Lin, H.Q. E. van Wagner, Freeman, B.D. Toy, L.G. and Gupta, R.P. Science 311 (2006) p.639.CrossRefGoogle Scholar
26 Morisato, A. and Pinnau, I. J.Membr. Sci. 121 (1996) p.243.Google Scholar
27 Morisato, A. Shen, H.C. Sankar, S.S. Freeman, B. Pinnau, I. and Casillas, C.G. J. Polym. Sci., Part B: Polym. Phys. 34 (1996) p.2209.3.0.CO;2-9>CrossRefGoogle Scholar
28 Merkel, T.C. Bondar, V. Nagai, K. Freeman, B.D. and Yampolskii, Y.P. Macromolecules 32 (1999) p.8427.Google Scholar
29 Pinnau, I. and Toy, L.G. J. Membr. Sci. 109 (1996) p.125.CrossRefGoogle Scholar
30 Pinnau, I. and He, Z., J.Membr. Sci. 244 (2004) p.227.CrossRefGoogle Scholar
31 Merkel, T.C. Bondar, V.I. Nagai, K. Freeman, B.D. and Pinnau, I. J. Polym. Sci., Part B: Polym. Phys. 38 (2000) p.415.Google Scholar
32 Armor, J.N. J. Membr. Sci. 147 (1998) p. 217.CrossRefGoogle Scholar
33 Caro, J., Noack, M. Kolsch, P. and Schafer, R. Microporous Mesoporous Mater. 38 (2000) p.3.Google Scholar
34 Chiang, A.S.T. and Chao, K.J. J. Phys. & Chem. Solids 62 (2001) p.1899.Google Scholar
35 Noack, M. Kolsch, P. Schafer, R. Tous-saint, P., and Caro, J. Chem. Eng. Technol. 25 (2002) p.221.Google Scholar
36 Thoma, S.G. Trudell, D.E. Bonhomme, F. and Nenoff, T.M. Microporous Mesoporous Mater. 50 (2001) p.33.CrossRefGoogle Scholar
37 Collot, A.G. “Prospects for hydrogen from coal,” IEAClean Coal Center (2003).Google Scholar
38 Uemiya, S. Top. Catal. 29 (2004) p.79.Google Scholar
39 Kikuchi, E. Catal. Today 56 (2000) p.97.CrossRefGoogle Scholar
40 Kikuchi, E. Nemoto, Y. Kajiwara, M. Uemiya, S. and Kojima, T. Catal. Today 56 (2000) p.75.Google Scholar
41 Paglieri, S.N. and Way, J.D. Sep. Purif. Methods 31 (2002) p.1.Google Scholar
42 Rothenberger, K.S. Ma, Y.H. Bustamante, F. Killmeyer, R.P. Mardilovich, I.P. Morreale, B.D. Enick, R.M. and Cugini, A.V. J. Membr. Sci. 224 (2004) p.55.CrossRefGoogle Scholar
43 Zhao, H.B. Xiong, G.X. Gu, J.H. Sheng, S.S. Bauser, H. Stroh, N. and Pflanz, K. Catal. Today 25 (1995) p.237.Google Scholar
44 Barbieri, G. Violante, V. Dimaio, F.P. Criscuoli, A. and Drioli, E. Ind. Eng. Chem. Res. 36 (1997) p.3369.CrossRefGoogle Scholar
45 Jayaraman, V. Lin, Y.S. Pakala, M. and Lin, R.Y. J.Membr. Sci. 99 (1995) p.89.Google Scholar
46 Lin, Y.M. Lee, G.L. and Rei, M.H. Catal. Today 44 (1998) p.343.CrossRefGoogle Scholar
47 Lin, Y.M. Liu, S.L. Chuang, C.H. and Chu, Y.T. Catal. Today 82 (2003) p.127.Google Scholar
48 Keuler, J.N. Lorenzen, L. and Miachon, S. Sep. Sci. Technol. 37 (2002) p.379.CrossRefGoogle Scholar
49 Paturzo, Nuclear L. and Basile, A. Ind. & Eng. Chem. Res. 41 (2002) p.1703.Google Scholar
50 Pan, X.L. Stroh, N. Brunner, H. Xiong, G.X. and Sheng, S.S. Sep. Purif. Technol. 32 (2003) p.265.Google Scholar
51 Tsuru, T. Tsuge, T. Kubota, S. Yoshida, K. Yoshioka, T. and Asaeda, M. Sep. Sci. Technol. 36 (2001) p.3721.Google Scholar
52 Kurungot, S. and Yamaguchi, T. Catal. Lett. 92 (2004) p.181.Google Scholar
53 Ioannides, T. and Verykios, X.E. Catal. Lett. 36 (1996) p.165.CrossRefGoogle Scholar
54 Ferreira-Aparicio, P., Rodriguez-Ramos, I., and Guerrero-Ruiz, A., Appl. Catal., A237 (2002) p.239.Google Scholar
55 Lee, D. Hacarlioglu, P. and Oyama, S.T. Top. Catal. 29 (2004) p.45.Google Scholar
56 Giessler, S. Jordan, L. Costa, J.C.D. da, and Lu, G.O. Sep. Purif. Technol. 32 (2003) p.255.CrossRefGoogle Scholar
57 Hasegawa, Y. Kusakabe, K. and Mo-rooka, S., J.Membr. Sci. 190 (2001) p.1.Google Scholar
58 Dong, J. Liu, W. and Lin, Y.S. AIChE J. 46 (2000) p. 1957; L. Li K. Adams J. Dong and T.M. Nenoff J.Membr. Sci. (2006) in preparation.Google Scholar
59 Prabhu, A.K. Radhakrishnan, R. and Oyama, S.T. Appl. Catal., A183 (1999) p.241.Google Scholar
60 Prabhu, A.K. and Oyama, S.T. Chem. Lett. (1999) p.213.CrossRefGoogle Scholar
61 Prabhu, A.K. and Oyama, S.T. J. Membr. Sci. 176 (2000) p.233.Google Scholar
62 Vroon, Z.A.E.P. Keizer, K. Gilde, M.J. Verweij, H. and Burggraaf, A.J. J. Membr. Sci. 113 (1996) p.293.CrossRefGoogle Scholar
63 Geus, E.R. Exter, M.J. den, and Bekkum, H.J. van, Chem. Soc. Faraday Trans. 88 (1992) p.3101.Google Scholar
64 Bakker, W.J.W. Kapteijn, F. Poppe, J. and Moulijn, J.A. J.Membr. Sci. 117 (1996) p.57.Google Scholar
65 Bai, C. Jia, M.D. Falconer, J.L. and Noble, R.D. J.Membr. Sci. 105 (1995) p.79.Google Scholar
66 Hedlund, J., Sterte, J., Anthonis, M. Bons, A.J. Carstensen, B. Corcoran, N. Cox, D. Deck-man, H., Gijnst, W. De, Moor, P. P. de, Lai, F. McHenry, J., Mortier, W. Reinoso, J., and Peters, J., Microporous Mesoporous Mater. 52 (2002) p. 179.CrossRefGoogle Scholar
67 Noack, M. Kolsch, P. Schafer, R. Tous-saint, P., Sieber, I. and Caro, J. Microporous Meso-porous Mater. 49 (1-3) (2001) p.25.Google Scholar
68 Gu, X.H. Dong, J.H. and Nenoff, T.M. Ind. Eng. Chem. Res. 44 (2005) p.937.Google Scholar
69 Li, S. Martinek, J.G. Falconer, J.L. Noble, R.D. and Gardner, T.Q. Ind. Eng. Chem. Res. 44 (2005) p.3220.Google Scholar
70 Rao, M.B. and Sircar, S. J. Membr. Sci. 85 (1993) p.253.Google Scholar
71 Merkel, T.C. Freeman, B.D. Spontak, R.J. He, Z., Pinnau, I. Meakin, P. and Hill, A.J. Science 296 (2002) p.519.Google Scholar