Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T13:57:20.107Z Has data issue: false hasContentIssue false

Mechanisms Active during Fracture under Constraint

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Many advanced technologies center on devices of small feature sizes made of diverse materials. Internal stresses that arise in the devices during fabrication and use can result in fracture. Fracture of an individual feature in such a device may impair the function of the device. The materials surrounding the feature have a constraining effect on the elastic energy available to drive the fracture, the plastic flow associated with the fracture, and sometimes even the atomic processes at the crack tip. This article reviews fracture behavior in small structures, several distinct roles played by plasticity, and bond-breaking kinetics. Research challenges are alsooutlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nix, W.D., Metall. Trans. A 20A (1989) p. 2217.CrossRefGoogle Scholar
2.Hutchinson, J.W. and Suo, Z., Adv. Appl. Mech. 29 (1992) p. 63.CrossRefGoogle Scholar
3.Thouless, M.D., J. Vac. Sci. Technol., A A9 (1991) p. 2510; J. Am. Ceram. Soc. 76 (1993) p. 2936.CrossRefGoogle Scholar
4.Evans, A.G. and Hutchinson, J.W., Acta Metall. Mater. 43 (1995) p. 2507.CrossRefGoogle Scholar
5.Hutchinson, J.W. and Evans, A.G., Acta Mater. 48 (2000) p. 125.CrossRefGoogle Scholar
6.Suo, Z., in Encyclopedia of Materials: Science and Technology, 2nd ed. (Elsevier Science, New York, 2001) in press.Google Scholar
7.Lawn, B.R.,Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
8.Cook, R.F. and Pharr, G.M., in Materials Science and Technology, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, 1994) p. 339.Google Scholar
9.Lu, T.C., Yang, J., Suo, Z., Evans, A.G., Hecht, R., and Mehrabian, R., Acta Metall. Mater. 39 (1991) p. 1883.CrossRefGoogle Scholar
10.Ma, Q., Xia, J., Chao, S., El-Mansy, S., McFadden, R., and Fujimoto, H., in Materials Reliability in Microelectronics VIII, edited by Bravman, J.C., Marieb, T.N., Lloyd, J.R., and Korhonen, M.A. (Mater. Res. Soc. Symp. Proc. 516, Warrendale, PA, 1998) p. 331.Google Scholar
11.Drory, M.D. and Hutchinson, J.W., Proc. R. Soc. London, Ser. A 452 (1996) p. 2319.Google Scholar
12.Liechti, K.M. and Chai, Y.S., J. Appl. Mech. 58 (3) (1991) p. 680.CrossRefGoogle Scholar
13.Dauskardt, R., Lane, M., Ma, Q., and Krishna, N., Eng. Fracture Mech. 61 (1) (1998) p. 141.CrossRefGoogle Scholar
14.Beuth, J.L. (unpublished manuscript).Google Scholar
15.Hutchinson, J.W., He, M.Y., and Evans, A.G., J. Mech. Phys. Solids 48 (2000) p. 709.CrossRefGoogle Scholar
16.Huck, W.T.S., Bowden, N., Onck, P., Pardoen, T., Hutchinson, J.W., and Whitesides, G.M., Langmuir 16 (2000) p. 3497.CrossRefGoogle Scholar
17.Sridhar, N., Srolovitz, D.J., and Suo, Z., Appl. Phys. Lett. 78 (2001) p. 2482.CrossRefGoogle Scholar
18.He, M.Y., Evans, A.G., and Hutchinson, J.W., Acta Mater. 48 (2000) p. 2593.CrossRefGoogle Scholar
19.Tolpygo, V.K. and Clarke, D.R., in Elevated Temperature Coatings: Science and Technology IV, edited by Dahotre, N.B., Hampikian, J.M., and Morral, J.E. (The Minerals, Metals & Materials Society, Warrendale, PA, 2001) p. 93.CrossRefGoogle Scholar
20.Gioia, G. and Ortiz, M., Adv. Appl. Mech. 33 (1997) p. 119.CrossRefGoogle Scholar
21.Hu, M.S. and Evans, A.G., Acta Mater. 37 (1989) p. 917.CrossRefGoogle Scholar
22.Beuth, J.L. and Klingbeil, N.W., J. Mech. Phys. Solids 44 (1996) p. 1411.CrossRefGoogle Scholar
23.Suo, Z., Shih, C.F., and Varias, A.G., Acta Metall. Mater. 41 (1993) p. 1551.CrossRefGoogle Scholar
24.Lane, M., Dauskardt, R.H., Vainchtein, A., and Gao, H.J., J. Mater. Res. 15 (12) (2000) p. 2758.CrossRefGoogle Scholar
25.Needleman, A. and van der Giessen, E., MRS Bull. 26 (3) (2001) p. 211.CrossRefGoogle Scholar
26.Varias, A.G., Suo, Z., and Shih, C.F., J. Mech. Phys. Solids 39 (1991) p. 963.CrossRefGoogle Scholar
27.Hsia, K.J., Suo, Z., and Yang, W., J. Mech. Phys. Solids 42 (1994) p. 877.CrossRefGoogle Scholar
28.Mao, S.X. and Evans, A.G., Acta Mater. 45 (10) (1997) p. 4263.CrossRefGoogle Scholar
29.Huang, M., Suo, Z., Ma, Q., and Fujimoto, H., J. Mater. Res. 15 (2000) p. 1239.CrossRefGoogle Scholar
30.Begley, M.R. and Evans, A.G., Trans. ASME J. Appl. Mech. in press.Google Scholar
31.Huang, M., Suo, Z., and Ma, Q., J. Mech. Phys. Solids in press.Google Scholar
32.Cook, R.F. and Liniger, E.G., J. Am. Ceram. Soc. 76 (1993) p. 1096.CrossRefGoogle Scholar
33.Cook, R.F. and Liniger, E.G., J. Electrochem. Soc. 146 (1999) p. 4439.CrossRefGoogle Scholar
34.Wei, Y., Chow, C.L., Fang, H.E., Neilsen, M.K., Lim, T.J., and Lu, W. (unpublished manuscript).Google Scholar
35.Suresh, S., Fatigue of Materials (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
36.Yu, H.H. and Suo, Z., Acta Mater. 47 (1999) p. 77.CrossRefGoogle Scholar