Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T20:24:08.032Z Has data issue: false hasContentIssue false

Mechanics of Bioinspired and Biomimetic Fibrillar Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Materials that are inspired by or are mimics of natural fibrillar surfaces in lizards and insects aim to achieve enhanced interfacial adhesion and contact properties by means of a fibrillar architecture. Studies of the mechanics of deformation and adhesion of such materials help to explain how they work and are aiding the design of their architecture. This article discusses some of the issues addressed by these studies, such as how can a fibrillar interface be made stronger and tougher than a flat control, and how does one enhance its ability to make contact to a variety of substrates?

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Creton, C., MRS Bull. 28 (6), 1 (2003).Google Scholar
2.Scherge, M., Gorb, S.N., Biological Micro- and Nanotribology: Nature's Solutions (Springer, Berlin, 2001).CrossRefGoogle Scholar
3.Rizzo, N.W. et al., J. R. Soc. Interface 3, 441 (2006).CrossRefGoogle Scholar
4.Glassmaker, N.J., Jagota, A., Hui, C.-Y., Kim, J., J. R. Soc. Interface 1, 22 (2004).CrossRefGoogle Scholar
5.Rajan, A., MS thesis (Lehigh University, 2006).Google Scholar
6.Glassmaker, N.J. et al., Proc. Natl. Acad. Sci. USA (2007) in press.Google Scholar
7.Autumn, K. et al., Nature 405, 681 (2000).CrossRefGoogle Scholar
8.Eisner, T., Aneshansley, D.J., Proc. Natl. Acad. Sci. USA 97, 6568 (2000).CrossRefGoogle Scholar
9.Ruibal, R., Ernst, V., J. Morphology 117, 271 (1965).Google Scholar
10.Hiller, U., J. Bombay Nat. Hist. Soc. 73, 278 (1976).Google Scholar
11.Hiller, U., Z. Morph. Tiere 62, 307 (1968).CrossRefGoogle Scholar
12.Williams, E.E., Peterson, J.A., Science 215, 1509 (1982).CrossRefGoogle Scholar
13.Gao, H. et al., Mech. Mater. 37, 275 (2005).CrossRefGoogle Scholar
14.Gorb, S.N., Proc. R. Soc. London, Ser. B 265, 747 (1998).CrossRefGoogle Scholar
15.Autumn, K. et al., Proc. Natl. Acad. Sci. USA 99, 12252 (2002).CrossRefGoogle Scholar
16.Sun, W. et al., Biophys. J. 89, L14 (2005).CrossRefGoogle Scholar
17.Huber, G. et al., Proc. Natl. Acad. Sci. USA 102, 16293 (2005).CrossRefGoogle Scholar
18.Huber, G., Gorb, S.N., Spolenak, R., Arzt, E., Biol. Lett. 1, 2 (2005).CrossRefGoogle Scholar
19.Geim, A.K. et al., Nature Mater. 2, 461 (2003).CrossRefGoogle Scholar
20.Hui, C.-Y., Glassmaker, N.J., Tang, T., Jagota, A., J. R. Soc. Interface 1, 35 (2004).CrossRefGoogle Scholar
21.Yurdumakan, B., Raravikar, N.R., Ajayan, P.M., Dhinojwala, A., Chem. Commun. 30, 3799 (2005).CrossRefGoogle Scholar
22.Majidi, C. et al., Phys. Rev. Lett. 97, 076103 (2006).CrossRefGoogle Scholar
23.Peressadko, A., Gorb, S.N., J. Adhes. 80, 247 (2004).CrossRefGoogle Scholar
24.Sitti, M., Fearing, R.S., J. Adhes. Sci. Technol. 17, 1055 (2003).CrossRefGoogle Scholar
25.Gorb, S., Varenberg, M., Peressadko, A., Tuma, J., J. R. Soc. Interface 4 (13) 271 (2007).CrossRefGoogle Scholar
26.Kim, S., Sitti, M., Appl. Phys. Lett. 89, 261911 (2006).CrossRefGoogle Scholar
27.Ghatak, A. et al., Proc. R. Soc. London, Ser. A 460, 2725 (2004).CrossRefGoogle Scholar
28.Chung, J.Y., Chaudhury, M.K., J. R. Soc. Interface 2, 55 (2005).CrossRefGoogle Scholar
29.Crosby, A.J., Hageman, M., Duncan, A., Langmuir 21, 11738 (2005).CrossRefGoogle Scholar
30.Jagota, A., Bennison, S.J., Integr. Comp. Biol. 42, 1140 (2002).CrossRefGoogle Scholar
31.Glassmaker, N.J., Jagota, A., Hui, C.-Y., Acta Biomater. 1, 367 (2005).CrossRefGoogle Scholar
32.Varenberg, M., Peressadko, A., Gorb, S., Arzt, E., Appl. Phys. Lett. 89, 121905 (2006).CrossRefGoogle Scholar
33.Hui, C.-Y., Glassmaker, N.J., Jagota, A., J. Adhes. 81, 699 (2005).CrossRefGoogle Scholar
34.Bhushan, B., Peressadko, A.G., Kim, T.W., J. Adhes. Sci. Technol. 20, 1475 (2006).CrossRefGoogle Scholar
35.Tang, T., Hui, C.Y., Glassmaker, N.J, J. R. Soc. Interface 2, 505 (2005).CrossRefGoogle Scholar
36.Gao, H., Ji, B., Buehler, M.J., Yao, H., Mech. Chem. Biosys. 1, 37 (2004).Google Scholar
37.Gao, H. et al., Proc. Natl. Acad. Sci. USA 100, 5597 (2003).CrossRefGoogle Scholar
38.Arzt, E., Gorb, S., Spolenak, R., Proc. Natl. Acad. Sci. USA 100, 10603 (2003).CrossRefGoogle Scholar
39.Persson, B.N.J., J. Chem. Phys. 118, 7614 (2003).CrossRefGoogle Scholar
40.Hui, C.Y., Jagota, A., Lin, Y.Y., Kramer, E.J., Langmuir 18, 1394 (2002).CrossRefGoogle Scholar
41.Sharp, K.G. et al., Langmuir 20, 6430 (2004).Google Scholar
42.Persson, B.N.J., Gorb, S., J. Chem. Phys. 119, 11437 (2003).CrossRefGoogle Scholar
43.Haas, F., Gorb, S., Arthropod Struct. Dev. 33, 45 (2004).Google Scholar
44.Majidi, C. et al., Phys. Rev. Lett. 97, 1 (2006).CrossRefGoogle Scholar
45.Gorb, S., Scherge, M., Proc. R. Soc. London, Ser. B 267, 1239 (2000).CrossRefGoogle Scholar
46.Gorb, S.N. et al., Integr. Comp. Biol. 42, 1127 (2002).CrossRefGoogle Scholar