Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T13:15:25.403Z Has data issue: false hasContentIssue false

Mechanical Properties of Bulk Metallic Glasses

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In the absence of dislocation-mediated crystallographic slip, room-temperature deformation in metallic glasses occurs in thin shear bands initially only ∼10 nm thick. A sharp drop in viscosity (shear softening) occurs in deformed glassy matter and facilitates additional flow in existing shear bands. This further localization of plastic flow leads to shearing-off failure without any significant macroscopic plasticity.

However, whereas most bulk metallic glasses fail in this manner, some undergo surprisingly extensive plastic deformation (in some cases, up to 50% or more) in compression or bending. When this occurs, the flow is “jerky,” as indicated by serrated stress–strain curves. Each serration may correspond to the emission of a shear band that then ceases to operate, at least temporarily, despite the predicted shear softening. As elastic energy is converted to heat during shear, temperatures rise sharply at or near shear bands. This heating may lead to the growth of nanocrystals that then block propagation of shear bands and cracks. The understanding of the dependence of mechanical response of metallic glasses on intrinsic (elastic constants, chemistry) and extrinsic factors (shapes, flaws) is the subject of intense current interest.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, W.L., Samwer, K., Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle Scholar
2.Inoue, A., Shen, B., Koshiba, H., Kato, H., Yavari, A.R., Nature Mater. 2, 661 (2003).CrossRefGoogle Scholar
3.Shen, B.L., Inoue, A., J. Phys.: Condens. Matter 17, 5647 (2005).Google Scholar
4.Gu, X.J., McDermott, A.G., Poon, S.J., Shiflet, G.J., Appl. Phys. Lett. 88, 211905 (2006).CrossRefGoogle Scholar
5.Inoue, A., Takeuchi, A., Mater. Trans. JIM 43, 1892 (2002).CrossRefGoogle Scholar
6.Chen, H.S., Krause, J.T., Coleman, E., J. Non-Cryst. Solids 18, 157 (1975).CrossRefGoogle Scholar
7.Ashby, M.F., Greer, A.L., Scripta Mater. 54, 321 (2006).CrossRefGoogle Scholar
8.Hajlaoui, K., Yavari, A.R., LeMoulec, A., Botta, W. J., Vaughan, F.G., Das, J., Greer, A.L., Kvick, Å., J. Non-Cryst. Solids 353, 327 (2007).CrossRefGoogle Scholar
9.Schroers, J., Johnson, W.L., Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle Scholar
10.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J., Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle Scholar
11.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., Greer, A.L., Philos. Mag. Lett. 85, 221 (2005).CrossRefGoogle Scholar
12.Yao, K.F., Ruan, F., Yang, Y.Q., Chen, N., Appl. Phys. Lett. 88, 122106 (2006).CrossRefGoogle Scholar
13.Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S., Eckert, J., Mater. Trans. JIM 47, 2606 (2006).CrossRefGoogle Scholar
14.Lewandowski, J.J., Lowhaphandu, P., Philos. Mag. A 82 (17), 3427 (2002).CrossRefGoogle Scholar
15.Sunny, G., Lewandowski, J.J., Prakash, V., J. Mater. Res. 22, 389 (2007).CrossRefGoogle Scholar
16.Spaepen, F., Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
17.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E., Nature 439, 419 (2006).CrossRefGoogle Scholar
18.Miracle, D.B., Nature Mater. 3, 697 (2004).CrossRefGoogle Scholar
19.Yavari, A.R., Nature 439, 405 (2006).CrossRefGoogle Scholar
20.Egami, T., Intermetallics 14, 882 (2006).CrossRefGoogle Scholar
21.Argon, A., Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
22.Schuh, C.A., Lund, A.C., Nature Mater. 2, 449 (2003).CrossRefGoogle Scholar
23.Falk, M.L., Langer, J.S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids 57, 7192 (1998).CrossRefGoogle Scholar
24.Argon, A.S., J. Phys. Chem. Solids 43, 945 (1982).CrossRefGoogle Scholar
25.Torre, F.H. Della, Dubach, A., Siegrist, M.E., Löffler, J.F., Appl. Phys. Lett. 89, 091918 (2006).CrossRefGoogle Scholar
26.Lewandowski, J.J., Wang, W.H., Greer, A.L., Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
27.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H., Science 315, 1385 (2007).CrossRefGoogle Scholar
28.Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J., Vaughan, G., Greer, A.L., Inoue, A., Zhang, W., Kvick, A., Scripta Mater. 54, 1829 (2006).CrossRefGoogle Scholar
29.Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., Eckert, J., Appl. Phys. Lett. 88, 051911 (2006).CrossRefGoogle Scholar
30.Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C., Phys. Rev. B: Condens. Matter 64, 180201 (2001).CrossRefGoogle Scholar
31.Das, J., Pauly, S., Duhamel, C., Wei, B.C., Eckert, J., J. Mater. Res. 22, 326 (2007).CrossRefGoogle Scholar
32.Lowhaphandu, P., Lewandowski, J.J., Scripta Mater. 38, 1811 (1998).CrossRefGoogle Scholar
33.Lewandowski, J.J., Mater. Trans. JIM 42, 633 (2001).CrossRefGoogle Scholar
34.Lewandowski, J.J., Shazly, M., Nouri, A. Shamimi, Scripta Mater. 54, 337 (2006).CrossRefGoogle Scholar
35.Argon, A.S., Salama, M., Mater. Sci. Eng. 23, 219 (1976).CrossRefGoogle Scholar
36.Yavari, A.R., Le Moulec, A., Inoue, A., Nishiyama, N., Lupo, N., Matsubara, E., Botta, W.J., Vaughan, F.G., di Michiel, M., Kvick, A., Acta Mater. 53, 1611 (2005).CrossRefGoogle Scholar
37.Lewandowski, J.J., Greer, A.L., Nature Mater. 5, 15 (2006).CrossRefGoogle Scholar
38.Yang, B., Liaw, P.K., Morrison, M., Liu, C.T., Buchanan, R.A., Huang, J.Y., Kuo, R.C., Huang, J.G., Fielden, D.E., Intermetallics 13, 419 (2005).CrossRefGoogle Scholar
39.Zhang, Y., Stelmashenko, N., Barber, Z., Lewandowski, J.J., Greer, A.L., J. Mater. Res. 22, 419 (2007).CrossRefGoogle Scholar
40.Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., Hono, K., Scripta Mater. 53, 165 (2005).CrossRefGoogle Scholar
41.Gerling, R., Schimansky, F.P., Wagner, R., Nucl. Sci. Eng. 110, 374 (1992).CrossRefGoogle Scholar
42.Choi-Yim, H., Xu, D.H., Lind, M.L., Löffler, J.F., Johnson, W.L., Scripta Mater. 54, 187 (2006).CrossRefGoogle Scholar
43.Sergueeva, A.V., Mara, N.A., Kuntz, J.D., Lavernia, E.J., Mukherjee, A.K., Philos. Mag. 85, 2671 (2005).CrossRefGoogle Scholar
44.Zhang, Y., Wang, W.H., Greer, A.L., Nature Mater. 5, 857 (2006).CrossRefGoogle Scholar
45.Conner, R.D., Dandliker, R.B., Johnson, W.L., Acta Mater. 46, 6089 (1999).CrossRefGoogle Scholar
46.Hagiwara, M., Inoue, A., Masumoto, T., Metall. Trans A 13, 373 (1982).CrossRefGoogle Scholar
47.Olofinjana, A.O., Davies, H.A., Mater. Sci. Eng., A 186, 143 (1994).CrossRefGoogle Scholar