Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T01:54:32.077Z Has data issue: false hasContentIssue false

Measurements of In-Plane Material Properties with Scanning Probe Microscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Scanning probe microscopy (SPM) was originally conceived as a method for measuring atomic-scale surface topography. Over the last two decades, it has blossomed into an array of techniques that can be used to obtain a rich variety of information about nanoscale material properties. With the exception of friction measurements, these techniques have traditionally depended on tip—sample interactions directed normal to the sample's surface. Recently, researchers have explored several effects arising from interactions parallel to surfaces, usually by deliberately applying a modulated lateral displacement. In fact, some parallel motion is ubiquitous to cantilever-based SPM, due to the tilt of the cantilever. Recent studies, performed in contact, noncontact, and intermittent-contact modes, provide new insights into properties such as structural anisotropy, lateral interactions with surface features, nanoscale shear stress and contact mechanics, and in-plane energy dissipation. The understanding gained from interpreting this behavior has consequences for all cantilever-based scanning probe microscopies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Meyer, G. and Amer, N., Appl. Phys. Lett. 57 (1990) p.2089.Google Scholar
2Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P.K., Longmire, M., and Gurley, J., J.Appl. Phys. 65 (1989) p.164.Google Scholar
3Carpick, R.W. and Salmeron, M., Chem. Rev. 97 (1997) p.1163.Google Scholar
4Ogletree, D.F., Carpick, R.W., and Salmeron, M., Rev. Sci. Instrum. 67 (1996) p.3298.Google Scholar
5Sader, J.E., Chon, J.W.M., and Mulvaney, P., Rev. Sci. Instrum. 70 (1999) p.3967.Google Scholar
6Villarrubia, J.S., Res, J.. Natl. Inst. Stand. Technol. (USA) 102 (1997) p.425.Google Scholar
7Hertz, H., J. Reine Angew. Math. 92 (1881) p.156.Google Scholar
8Johnson, K.L., Kendall, K., and Roberts, A.D., Proc. R. Soc. London, Series A 324 (1971) p. 301.Google Scholar
9Derjaguin, B.V., Muller, V.M., and Toporov, Y.P., J. Colloid Interface Sci. 53 (1975) p. 314.CrossRefGoogle Scholar
10Maugis, D., J. Colloid Interface Sci. 150 (1992) p.243.Google Scholar
11Carpick, R.W., Ogletree, D.F., and Salmeron, M., J.Colloid Interface Sci. 211 (1999) p.395.Google Scholar
12Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, UK, 1987).Google Scholar
13Lantz, M.A., O'Shea, S.J., Hoole, A.C.F., and Welland, M.E., Appl. Phys. Lett. 70 (1997) p. 970.Google Scholar
14Piétrement, O., Beaudoin, J.L., and Troyon, M., Trib. Lett. 7 (2000) p.213.Google Scholar
15Yamanaka, K. and Tomita, E., Jpn. J. Appl. Phys., Part 1 34 (1995) p.2879.CrossRefGoogle Scholar
16Carpick, R.W., Ogletree, D.F., and Salmeron, M., Appl. Phys. Lett. 70 (1997) p.1548.Google Scholar
17Lantz, M.A., O'Shea, S.J., Welland, M.E., and Johnson, K.L., Phys. Rev. B 55 (1997) p.10776.CrossRefGoogle Scholar
18Carpick, R.W., Enachescu, M., Ogletree, D.F., and Salmeron, M., in Fracture and Ductile vs. Brittle Behavior—Theory, Modelling and Experiment, edited by Beltz, G.E., Selinger, R.L. Blumberg, Kim, K.-S., and Marder, M.P. (Mater. Res. Soc. Symp. Proc. 539, Warrendale, PA, 1999) p.93.Google Scholar
19Pietrement, O. and Troyon, M., Langmuir 17 (2001) p.6540.Google Scholar
20Wahl, K.J., Stepnowski, S.V., and Unertl, W.N., Trib. Lett. 5 (1998) p.103.Google Scholar
21Pu, Y., Rafailovich, M., Sokolov, K., Duan, Y., Pearce, E., Zaitsev, V., Schwarz, S., and Ge, S., Langmuir 17 (2001) p.5865.Google Scholar
22Sills, S. and Overney, R.M., Phys. Rev. Lett. 91 095501 (2003).CrossRefGoogle Scholar
23He, M., Blum, A.S., Overney, G., and Overney, R.M., Phys. Rev. Lett. 88 154302 (2002).Google Scholar
24Gray, T., Buenviaje, C., Overney, R.M., Jenekhe, S.A., Zheng, L., and Jen, A.K.Y., Appl. Phys. Lett. 83 (2003) p.2563.Google Scholar
25Krotil, H.-U., Stifter, T., and Marti, O., Appl. Phys. Lett. 77 (2000) p.3857.CrossRefGoogle Scholar
26Drobek, T., Stark, R.W., and Heckl, W.M., Phys. Rev. B 64 045401 (2001).Google Scholar
27Yamanaka, K., Noguchi, A., Tsuji, T., Koike, T., and Goto, T., Surf. Interface. Anal. 27 (1999) p.600.Google Scholar
28Carpick, R.W., Sasaki, D.Y., and Burns, A.R., Trib. Lett. 7 (1999) p.79.Google Scholar
29Overney, R.M., Takano, H., Fujihira, M., Paulus, W., and Ringsdorf, H., Phys. Rev. Lett. 72 (1994) p.3546.Google Scholar
30Liley, M., Gourdon, D., Stamou, D., Meseth, U., Fischer, T.M., Lautz, C., Stahlberg, H., Vogel, H., Burnham, N.A., and Duschl, C., Science 280 (1998) p.273.Google Scholar
31Gehlert, U., Fang, J.Y., and Knobler, C.M., J.Phys. Chem. B 102 (1998) p.2614.Google Scholar
32Hisada, K. and Knobler, C.M., Colloids Surf., A 198–200 (2002) p.21.CrossRefGoogle Scholar
33Bluhm, H., Schwarz, U.D., Meyer, K.P., and Wiesendanger, R., Appl. Phys. A 61 (1995) p.525.Google Scholar
34Sasaki, D.Y., Carpick, R.W., and aBurns, A.R., J.Colloid Interface Sci. 229 (2000) p.490.Google Scholar
35Mowery, M.D. and Evans, C.E., Tetrahedron Lett. 38 (1997) p.11.CrossRefGoogle Scholar
36Burns, A.R. and Carpick, R.W., Appl. Phys. Lett. 78 (2001) p.317.Google Scholar
37Marcus, M.S., Carpick, R.W., Sasaki, D.Y., and Eriksson, M.A., Phys. Rev. Lett. 88 226103 (2002).Google Scholar
38Marcus, M.S., Eriksson, M.A., Sasaki, D.Y., and Carpick, R.W., Ultramicroscopy 97 (2003) p.145.CrossRefGoogle Scholar
39Cleveland, J.P., Anczykowski, B., Schmid, A.E., and Elings, V.B., Appl. Phys. Lett. 72 (1998) p.2613.Google Scholar
40Tamayo, J. and Garcia, R., Appl. Phys. Lett. 71 (1997) p.2394.CrossRefGoogle Scholar
41D'Amato, M.J., Marcus, M.S., Sasaki, D.Y., Eriksson, M.A., and Carpick, R.W., Appl. Phys. Lett. (2004) in press.Google Scholar
42Garcia, R. and Paulo, A. San, Phys. Rev. B 60 (1999) p.4961.Google Scholar
43Pfeiffer, O., Bennewitz, R., Baratoff, A., Meyer, E., and Grütter, P., Phys. Rev. B 65 161403 (2002).Google Scholar
44Crommie, M.F., Lutz, C.P., and Eigler, D.M., Science 262 (1993) p.218Google Scholar
45Jarvis, S.P., Yamada, H., Kobayashi, K., Toda, A., and Tokumoto, H., Appl. Surf. Sci. 157 (2000) p.314.Google Scholar