Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T14:05:10.842Z Has data issue: false hasContentIssue false

Materials Science in the Electron Microscope

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

This issue of the MRS Bulletin aims to highlight the innovative and exciting materials science research now being done using in situ electron microscopy. Techniques which combine real-time image acquisition with high spatial resolution have contributed to our understanding of a remarkably diverse range of physical phenomena. The articles in this issue present recent advances in materials science which have been made using the techniques of transmission electron microscopy (TEM), including holography, scanning electron microscopy (SEM), low-energy electron microscopy (LEEM), and high-voltage electron microscopy (HVEM).

The idea of carrying out dynamic experiments involving real-time observation of microscopic phenomena has always had an attraction for materials scientists. Ever since the first static images were obtained in the electron microscope, materials scientists have been interested in observing processes in real time: we feel that we obtain a true understanding of a microscopic phenomenon if we can actually watch it taking place. The idea behind “materials science in the electron microscope” is therefore to use the electron microscope—with its unique ability to image subtle changes in a material at or near the atomic level—as a laboratory in which a remarkable variety of experiments can be carried out. In this issue you will read about dynamic experiments in areas such as phase transformations, thin-film growth, and electromigration, which make use of innovative designs for the specimen, the specimen holder, or the microscope itself. These articles speak for themselves in demonstrating the power of real-time analysis in the quantitative exploration of reaction mechanisms.

The first transmission electron microscopes operated at low accelerating voltages, up to about 100 kV. This placed a severe limitation on the thickness of foils that could be examined: Heavy elements, for example, had to be made into foils thinner than 0.1 μm. It was felt that any phenomenon whose “mean free path” was comparable to the foil thickness would be significantly affected by the foil surfaces, and therefore would be unsuitable for study in situ. However, technology quickly generated ever higher accelerating voltages, culminating in the giant 3 MeV electron microscopes. At these voltages, electrons can penetrate materials as thick as 6–9 μm for light elements such as Si and Al, and 1 μm for very heavy ones such as Au and U.

Type
Materials Science in the Electron Microscope
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fujita, H., J. Electron Microsc. Tech. 12 (1989) p. 201.CrossRefGoogle Scholar
2.Brooks, J.W., Loretto, M.H., and Smallman, R.E., Acta Metall. 27 (1979) p. 829.Google Scholar
3.Landuyt, J. van, Tendeloo, G. van, and Amelinckx, S., Phys. Status Solidi 30 (1975) p. K11.CrossRefGoogle Scholar
4.Snoeck, E., Roucau, C., Baules, P., Casanave, M.J., Fagot, M., Astie, B., and Degauque, J., Microsc. Microanal. Microstruct. 4 (1993) p. 249.CrossRefGoogle Scholar
5.Mecartney, M.L. and Rühle, M., Acta Metall. 37 (1989) p. 1859.CrossRefGoogle Scholar
6.Batstone, J.L., Philo's. Mag. A 67 (1993) p. 51.CrossRefGoogle Scholar
7.Hayzelden, C. and Batstone, J.L., J. Appl. Phys. 73 (1993) p. 8279.CrossRefGoogle Scholar
8.Smith, D.A., Tu, K.N., and Weiss, B.Z., Ultramicroscopy 23 (1987) p. 405.CrossRefGoogle Scholar
9.Reiche, M. and Hopfe, S., Ultramicroscopy 33 (1990) p. 41.CrossRefGoogle Scholar
10.Johnson, E., Hjemsted, K., Schmidt, B., Bourdelle, K.K., Johansen, A., Andersen, H.H., and Sarholt-Kristensen, L., in Proc. EUREM 91, 2, Granada, Spain (1992) p. 267.Google Scholar
11.Chang, Y.C. and Howe, J.M., Ultramicroscopy 51 (1993) p. 46.CrossRefGoogle Scholar
12.Hewitt, P. and Butler, E.P., Acta Metall. 34 (1986) p. 1163.CrossRefGoogle Scholar
13.Howe, J.M., in Proc. Phase Transformations '87 (Institute of Metals, London, 1988) p. 637.Google Scholar
14.Howe, J.M., Dahmen, U., and Gronsky, R., Philos. Mag. A 56 (1987) p. 31.CrossRefGoogle Scholar
15.Howe, J.M., Benson, W.E., Garg, A., and Chang, Y.C., in Proc. Interfaces II, Ballarat, Victoria, Australia, November 1993, in press.Google Scholar
16.Louchet, F., Muchy, D.C., Berchet, Y., and Pelissier, J., Philos. Mag. A 57 (1988) p. 327.CrossRefGoogle Scholar
17.Caillard, D., Clement, N., Couret, A., Androussi, Y., Lefebvre, A., and Vanderschaeve, G., Inst. Phys. Conf. Ser. 100 (1989) p. 403.Google Scholar
18.Robertson, I.M., Lee, T.C., and Birnbaum, H.K., Ultramicroscopy 40 (1992) p. 330.CrossRefGoogle Scholar
19.Suzuki, M., Fujimura, A., Sato, A., Nagakawa, J, Yamamoto, N., and Shiraishi, H., Ultramicroscopy 39 (1991) p. 92.CrossRefGoogle Scholar
20.Lillo, T.M., Hackney, S.A., and Plichta, M.R., Ultramicroscopy 37 (1991) p. 294.CrossRefGoogle Scholar
21.Kenik, E.A., Crooks, R., and Starke, E.A., in Proc. 7th Int. Conf. HVEM, Berkeley, California, August 1983 (1983) p. 199.Google Scholar
22.Caillard, D. and Martin, J.L., Proc. 7th Int. Conf. HVEM, Berkeley, California, August 1983 (1983). p. 205.Google Scholar
23.Komatsu, M. and Fujita, H., Ultramicroscopy 39 (1991) p. 105.CrossRefGoogle Scholar
24.Baufeld, B., Baither, D., Messerschmidt, U., Bartsch, M., and Merkel, I., J. Am. Ceram. Soc. 76 (1993) p. 3163.CrossRefGoogle Scholar
25.Baker, I. and Liu, F., in Defect-Interface Interactions, edited by Kvam, E.P., King, A.H., Mills, M.J., Sands, T.D., and Vitek, V., (Mater. Res. Soc. Symp. Proc. 319, Pittsburgh, PA, 1994) p. 203.Google Scholar
26.Gibson, J.M., Batstone, J.L., and Tung, R.T., Appl. Phys. Lett. 51 (1987) p. 45.CrossRefGoogle Scholar
27.Gibson, J.M. and Batstone, J.L., Surf. Sci. 208 (1989) p. 317.CrossRefGoogle Scholar
28.Kodaira, Y., Takayanagi, K., Kobayashi, K., and Yagi, K., in Proc. 7th Int. Conf. HVEM, Berkeley, California, August 1983 (1993) p. 103.Google Scholar
29.Tanishiro, Y. and Takayanagi, K., Ultramicroscopy 31 (1989) p. 20.CrossRefGoogle Scholar
30.Gai, P.L., Philos. Mag. 43 (1981) p. 841; 45 (1982) p. 531.CrossRefGoogle Scholar
31.Mitchell, T.E., Voss, D.A., and Butler, E.P., J. Mater. Sci. 17 (1982) p. 1825.CrossRefGoogle Scholar
32.Atzmon, Z., Sharma, R., Mayer, J.W, and Hong, S.Q., in Mechanisms of Thin Film Evolution, edited by Yalisove, S.M., Thompson, C.V., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994) p. 245.Google Scholar
33.Sharma, R., Atzmon, Z., Mayer, J.W. and Hong, S.Q., in Mechanisms of Thin Film Evolution, edited by Yalisove, S.M., Thompson, C.V., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994) p. 251Google Scholar
34.Takayanagi, K., Tanishiro, Y., Takahashi, S., and Takahashi, M., Surf. Sci. 164 (1985) p. 367.CrossRefGoogle Scholar
35.Telieps, W. and Bauer, E., Surf. Sci. 162 (1985) p. 163.CrossRefGoogle Scholar
36.Shimizu, N., Tanishiro, Y., Takayanagi, K., and Yagi, K., Surf. Sci. 191 (1987) p. 28.CrossRefGoogle Scholar
37.Shimizu, N., Tanishiro, Y., Kobayashi, K., Takayanagi, K., and Yagi, K., Ultramicroscopy 18 (1985) p. 453.CrossRefGoogle Scholar
38.Kahata, H. and Yagi, K., Surf. Sci. 220 (1989) p. 131.CrossRefGoogle Scholar
39.Mundschau, M., Bauer, E., Telieps, W., and Swiech, W, Surf. Sci. 223 (1989) p. 413.CrossRefGoogle Scholar
40.Feltz, A., Memmert, U., and Behm, R.J., Chem. Phys. Lett. 192 (1992) p. 271.CrossRefGoogle Scholar
41.Seiple, J., Pecquet, J., Meng, Z., and Pelz, J.P., J. Vac. Sci. Technol. A 11 (1993) p. 1649.CrossRefGoogle Scholar
42.Krakow, W, in Proc. 49th Annu. Meeting EMSA (1991) p. 446.Google Scholar
43.Xu, P., Miller, P., and Silcox, J., in Evolution of Thin Film and Surface Microstrudure, edited by Thompson, C.V., Tsao, J. Y., and Srolovitz, D.J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991) p. 19.Google Scholar
44.Hamers, R.J., Köhler, U.K., and Demuth, J.E., Ultramicroscopy. 31 (1989) p. 10.CrossRefGoogle Scholar
45.Mo, Y-W, Kariotis, R., Swartzentruber, B.S., Webb, M.B., and Lagally, M.G., J. Vac. Sci. Technol. 8 (1990) p. 201.CrossRefGoogle Scholar
46.Ross, E.M. and Gibson, J.M., Phys. Rev. Lett. 68 (1992) p. 1782.CrossRefGoogle Scholar
47.Danilatos, G.D., Microsc. Res. Tech. 25 (1993) p. 354.CrossRefGoogle Scholar
48.Kiritani, M., Ultramicroscopy 39 (1991) p. 135.CrossRefGoogle Scholar
49.Luzzi, D.E. and Meshii, M., Res Mechanica 21 (1987) p. 207.Google Scholar
50.Urban, K., Moser, N., and Kronmüller, H., Phys. Status Solidi A 91 (1985) p. 411.CrossRefGoogle Scholar
51.Motta, A.T., Howe, L.M., and Okamoto, P.R., J. Nucl. Mater. 205 (1993) p. 258.CrossRefGoogle Scholar
52.Ezawa, T. and Wakai, E., Ultramicroscopy 39 (1991) p. 187.CrossRefGoogle Scholar
53.Allen, C.W. and Smith, D.A., Ultramicroscopy 39 (1991) p. 222.CrossRefGoogle Scholar
54.Sinclair, R., Yamashita, T., and Ponce, F.A., Nature 290 (1981) p. 386.CrossRefGoogle Scholar
55.Sinclair, R., Ponce, F.A., Yamashita, T., Smith, D.J., Camps, R.A., Freeman, L.A., Erasmus, S.J., Nixon, W.C., Smith, K.C.A., and Catto, C.J.D., Nature 298 (1982) p. 127.CrossRefGoogle Scholar
56.Cochrane, H.D., Hutchison, J.L., and White, D., Ultramicroscopy 31 (1989) p. 138.CrossRefGoogle Scholar
57.Goessens, C., Schryvers, D., van Landuyt, J., and De Keyzer, R., Ultramicroscopy 40 (1992) p. 151.CrossRefGoogle Scholar
58.Hashimoto, H., Takai, Y., Yokota, Y., Endoh, H., and Fukadajpn, E.. J. Appl. Phys. 19 (1980) p. L1.CrossRefGoogle Scholar
59.Bovin, J-O., Wallenberg, R., and Smith, D.J., Nature 317 (1985) p. 47.CrossRefGoogle Scholar
60.Smith, D.J., Petford-Long, A.K., Wallenberg, L.R., and Bovin, J-O., Science 233 (1986) p. 872.CrossRefGoogle ScholarPubMed
61.Maim, J-O. and Bovin, J-O., Surf, Sci. 200 (1988) p. 67.Google Scholar
62.Malm, J-O., Bovin, J-O., Petford-Long, A.K., and Smith, D.J., J. Cryst. Growth 89 (1988) p. 165.CrossRefGoogle Scholar
63.Medlin, D.L., Stobbs, W.M., Weinberg, J.D., Angelo, J.E., Daw, M.S., and Mills, M.J., in Defect Interface Interactions, edited by Kvam, E.P., King, A.H., Mills, M.J., Sands, T.D., and Vitek, V. (Mater. Res. Soc. Symp. Proc. 319, Pittsburgh, PA, 1994), p. 273.Google Scholar
64.Smith, D.J., M.R. McCartney, and Bursill, L.A., Ultramicroscopy 23 (1987) p. 299.CrossRefGoogle Scholar
65.Marks, L.D., Ai, R., Bonevich, J.E., Buckett, M.I., Dunn, D., Zhang, J.P., Jacoby, M., and Stair, P.C., Ultramicroscopy 37 (1991) p. 90.CrossRefGoogle Scholar
66.Humphreys, C.J., Bullough, T.J., Devenish, R.W., and Maher, D.M., Scanning Microsc. S. 4 (1990) p. 185.Google Scholar
67.Frabboni, S., Matteuci, G., and Pozzi, G., Ultramicroscopy 23 (1987) p. 29.CrossRefGoogle Scholar
68.Zhang, X., Joy, D.C., Zhang, Y.S., Hashimoto, T., Allard, L., and Nolan, T.A., Ultramicroscopy 51 (1993) p. 21.CrossRefGoogle Scholar
69.Speck, J.S., De Graef, M., Wilkinson, A.P., Cheetham, A.K., and Clarke, D.R., J. Appl. Phys. 73 (1993) p. 7261.CrossRefGoogle Scholar
70.Watanabe, D., Sekiguchi, T., and Aoyagi, E., in Proc. 7th Int. Conf. HVEM, Berkeley, California, August 1983 (1983) p. 285.Google Scholar
71.Ramesh, R. and Thomas, G., J. Appl. Phys. 67 (1990) p. 6968.CrossRefGoogle Scholar