Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:50:08.996Z Has data issue: false hasContentIssue false

Materials in Active-Matrix Liquid-Crystal Displays

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In today's world of increasing office automation and computer-aided personal-communications systems, display devices play a very important role as person-machine interfaces. Above all, high-definition, full-color flat-panel displays will be key devices in the near future when processing huge amounts of information—including pictorial images via computer networks and telecommunication systems that transcend the present limitations of time and place—will be possible.

Passive-matrix liquid-crystal displays (LCDs) represent the most widely used choice for portable display devices. Figure 1 illustrates the essential components and operating principle of a typical LCD. Each pixel is addressed by the top- and bottom-line electrodes of the cell based on information signals, producing a light image. By installing a color filter of red, green, or blue for each pixel, full-color images can be displayed. However, the essential problems of crosstalk among pixels and low response speed become serious with an increase in the number of pixels, resulting in a low contrast ratio and failure of the display to keep up with the signals.

Type
Materials for Flat-Panel Displays
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pankove, J.I., ed., Semiconductors and Semimetals, vol. 21, Parts A and B (Academic Press, Inc., London, 1984).Google Scholar
2.Pankove, J.I., ed., Semiconductors and Semimetals, vol. 21, Parts A and C (Academic Press, Inc., London, 1984).Google Scholar
3.Pankove, J.I., ed., Semiconductors and Semimetals, vol. 21, Part A (Academic Press, Inc., London, 1984).Google Scholar
4.Luft, W. and Tusuo, Y.S., Hydrogenated Amorphous Silicon Alloy Deposition Precesses (Marcel Dekker, Inc., New York, 1993).Google Scholar
5.Spear, W.E. and LeComber, P.G., Solid State Commun. 17 (1975) p. 1193.CrossRefGoogle Scholar
6.Pankove, J.I., ed., Semiconductors and Semimetals, vol. 21, Part D (Academic Press, Inc., London, 1984).Google Scholar
7.Powell, M.J., in Comparison of Thin Film Transistor and DO1 Technologies, edited by Lamand, H.W. and Thompson, M.J. (North-Holland, Amsterdam, 1984) p. 259.Google Scholar
8.Sameshima, T., Sekiya, M., Hara, M., Sano, N., and Kono, A., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, 1995) p. 927.Google Scholar
9.Baba, T., Matuyama, T., Sawada, T., Takahama, T., Wakisaka, K., and Tuda, S., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, 1995) p. 895.Google Scholar
10.Serikawa, T., Shirai, S., Okamoto, A., and Suyama, S., IEEE Trans. Electron Devices ED–36 (1989) p. 1928.Google Scholar
11.Kuriyama, H., Nohda, T., Aya, Y., Kuwahara, T., Wakisaka, K., Kiyama, S., and Tsuda, S., Jpn. J. Appl. Phys. 33 (1994) p. 5657.CrossRefGoogle Scholar
12.Okumura, F., Sera, K., Tanabe, H., Yuda, K., and Okumura, H., in Amorphous Silicon Technology—1995, edited by Hack, M., Schiff, E.A., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Symp. Proc. 377, Pittsburgh, 1995) p. 877.Google Scholar
13.Matsuda, A., Matsumura, M., Yamasaki, S., Yamamoto, H., Imura, T., Ohkushi, H., Iizuma, S., and Tanaka, K., Jpn. J. Appl. Phys. 20 (1981) p. L193.CrossRefGoogle Scholar
14.Nishida, S., Tasaki, H., Konagai, M., and Takahashi, K., J. Appl. Phys. 58 (1985) p. 1427.CrossRefGoogle Scholar
15.Shibata, N., Fukuda, K., Ohtoshi, H., Hanna, J., Oda, S., and Shimizu, I., Jpn. J. Appl. Phys. 26 (1987) p. L10.CrossRefGoogle Scholar
16.Komiya, T., Kamo, A., Kujirai, H., Shimizu, I., and Hanna, J., in Materials Issues in Microcrystalline Semiconductors, edited by Fauchet, P.M., Tanaka, K., and Tsai, C.C. (Materials Research Society, Pittsburgh, 1990) p. 63.Google Scholar
17.Nagahara, T., Fujimoto, K., Kohno, N., Kashiwagi, Y., and Kakinoki, H., Jpn. J. Appl. Phys. 31 (1992) p. 4555.CrossRefGoogle Scholar
18.Endo, K., Bunyo, M., Shimizu, I., and Hanna, J., in Microcrystalline Semiconductors: Materials Science & Devices, edited by Fauchet, P.M., Tsai, C.C., Canham, L.T., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, 1993) p. 641.Google Scholar
19.Wang, K.C., Hwang, H.L., and Yew, T.R., Appl. Phys. Lett. 64 (1994) p. 1024.CrossRefGoogle Scholar
20.Ishihara, S., He, D., and Shimizu, I., Jpn. J. Appl. Phys. 33 (1994) p. 51.CrossRefGoogle Scholar
21.He, D., Okada, N., Fortmann, C.M., and Shimizu, I., J. Appl. Phys. 76 (1994) p. 4728.CrossRefGoogle Scholar