Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T19:33:53.189Z Has data issue: false hasContentIssue false

Materials for spin-transfer-torque magnetoresistive random-access memory

Published online by Cambridge University Press:  10 May 2018

Shinji Yuasa
Affiliation:
National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Japan; [email protected]
Kazuhiro Hono
Affiliation:
Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, Japan; [email protected]
Guohan Hu
Affiliation:
IBM T.J. Watson Research Center, USA; [email protected]
Daniel C. Worledge
Affiliation:
IBM T.J. Watson Research Center, USA; [email protected]
Get access

Abstract

Spin-transfer-torque magnetoresistive random-access memory (STT-MRAM) is an emerging nonvolatile memory that uses magnetic tunnel junctions (MTJs) to store information. MTJs with a crystalline MgO(001) tunnel barrier sandwiched between ferromagnetic layers, such as CoFeB, exhibit giant tunnel magnetoresistance, which is used to readout the STT-MRAM. Writing of STT-MRAM is based on current-induced magnetization reversal, called STT switching. STT-MRAM with perpendicular magnetization is especially important for high-density and low-power-consuming memory applications such as embedded memory for large-scale integrated circuit. For STT-MRAM to replace ultrahigh-density dynamic random-access memory, however, there are still technological challenges concerning the materials and fabrication processes of MTJs. This article reviews the physics and materials science of MTJs for STT-MRAM. We also discuss the importance of new MTJ materials and processes for next-generation ultrahigh-density MRAM.

Type
Materials for Advanced Semiconductor Memories
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Julliere, M., Phys. Lett. A 54, 225 (1975).CrossRefGoogle Scholar
Miyazaki, T., Tezuka, N., J. Magn. Magn. Mater. 139, L231 (1995).CrossRefGoogle Scholar
Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).CrossRefGoogle Scholar
Butler, W.H., Zhang, X.-G., Schulthess, T.C., MacLaren, J.M., Phys. Rev. B Condens. Matter 63, 054416 (2001).CrossRefGoogle Scholar
Mathon, J., Umersky, A., Phys. Rev. B Condens. Matter 63, 220403R (2001).CrossRefGoogle Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K., Nat. Mater. 3, 868 (2004).CrossRefGoogle Scholar
Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H., Nat. Mater. 3, 862 (2004).CrossRefGoogle Scholar
Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y., Ando, K., Appl. Phys. Lett. 86, 092502 (2005).CrossRefGoogle Scholar
Yuasa, S., Djayaprawira, D.D., J. Phys. D Appl. Phys. 40, R337 (2007).CrossRefGoogle Scholar
Slonczewski, J.C., Phys. Rev. B Condens. Matter 39, 6995 (1989).CrossRefGoogle Scholar
Slonczewski, J.C., J. Magn. Magn. Mater. 159, L1 (1996).CrossRefGoogle Scholar
Berger, L., Phys. Rev. B Condens. Matter 54, 9353 (1996).CrossRefGoogle Scholar
Sun, J.Z., J. Magn. Magn. Mater. 202, 157 (1999).CrossRefGoogle Scholar
Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., Ralph, D.C., Phys. Rev. Lett. 84, 3149 (2000).CrossRefGoogle Scholar
Huai, Y., Albert, F., Nguyen, P., Pakala, M., Valet, T., Appl. Phys. Lett. 84, 3118 (2004).CrossRefGoogle Scholar
Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K., Yamada, H., Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H., IEDM Tech. Dig. 19.1 (2005).Google Scholar
Sun, J.Z., Phys. Rev. B Condens. Matter 62, 570 (2000).CrossRefGoogle Scholar
Kishi, T., Yoda, H., Kai, T., Nagase, T., Kitagawa, E., Yoshikawa, M., Nishiyama, K., Daibou, T., Nagamine, M., Amano, M., Takahashi, S., Nakayama, M., Shimomura, N., Aikawa, H., Ikegawa, S., Yuasa, S., Yakushiji, K., Kubota, H., Fukushima, A., Oogane, M., Miyazaki, T., Ando, K., IEDM Tech. Dig. 12.6 (2008).Google Scholar
Worledge, D.C., Hu, G., Trouilloud, P.L., Abraham, D.W., Brown, S., Gaidis, M.C., Nowak, J., O’Sullivan, E.J., Robertazzi, R.P., Sun, J.Z., Gallagher, W.J., IEDM Tech. Dig. 12.5 (2010).Google Scholar
Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., Ohno, H., Nat. Mater. 9, 721 (2010).CrossRefGoogle Scholar
Worledge, D.C., Hu, G., Abraham, D.W., Sun, J.Z., Trouilloud, P.L., Nowak, J., Brown, S., Gaidis, M.C., O’Sullivan, E.J., Robertazzi, R.P., Appl. Phys. Lett. 98, 022501 (2011).CrossRefGoogle Scholar
Yang, H.X., Chshiev, M., Dieny, B., Lee, J.H., Manchon, A., Shin, K.H., Phys. Rev. B Condens. Matter 84, 054401 (2011).CrossRefGoogle Scholar
Monso, S., Rodmacq, B., Auffret, S., Casali, G., Fettar, F., Gilles, B., Dieny, B., Boyer, P., Appl. Phys. Lett. 80, 4157 (2002).CrossRefGoogle Scholar
Manchon, A., Ducruet, C., Lombard, L., Auffret, S., Rodmacq, B., Dieny, B., Pizzini, S., Vogel, J., Uhlir, V., Hochstrasser, M., Panaccione, G., J. Appl. Phys. 104, 043914 (2008).CrossRefGoogle Scholar
Nistor, L.E., Rodmacq, R., Auffret, A., Dieny, B., Appl. Phys. Lett. 94, 012512 (2009).CrossRefGoogle Scholar
Kubota, H., Ishibashi, S., Saruya, T., Nozaki, T., Fukushima, A., Yakushiji, K., Ando, K., Suzuki, Y., Yuasa, S., J. Appl. Phys. 111, 07C723 (2012).CrossRefGoogle Scholar
Sato, H., Yamanouchil, M., Ikeda, S., Fukami, S., Matsukura, F., Ohno, H., Appl. Phys. Lett. 101, 022414 (2012).CrossRefGoogle Scholar
Konoto, M., Imamura, H., Taniguchi, T., Yakushiji, K., Kubota, H., Fukushima, A., Ando, K., Yuasa, S., Appl. Phys. Express 6, 073002 (2013).CrossRefGoogle Scholar
Hu, G., Topuria, T., Rice, P.M., Jordan-Sweet, J., Worledge, D.C., IEEE Magn. Lett. 4, 3000104 (2013).CrossRefGoogle Scholar
Kim, W., Kim, W., Jeong, J.H., Kim, Y., Lim, W.C., Kim, J.H., Park, J.H., Shin, H.J., Park, Y.S., Kim, K.S., Park, S.H., Lee, Y.J., Kim, K.W., Kwon, H.J., Park, H.L., Ahn, H.S., Oh, S.C., Lee, J.E., Park, S.O., Choi, S., Kang, H.K., Chung, C., IEDM Tech. Dig. 24.1 (2011).Google Scholar
Nowak, J.J., Robertazzi, R.P., Sun, J.Z., Hu, G., Park, J.-H., Lee, J.H., Annunziata, A.J., Lauer, G.P., Kothandaraman, R., O’Sullivan, E.J., Trouilloud, P.L., Kim, Y., Worledge, D.C., IEEE Magn. Lett. 7, 3102604 (2016).CrossRefGoogle Scholar
Sakuraba, Y., Hattori, M., Oogane, M., Ando, Y., Kato, H., Sakuma, A., Miyazaki, T., Appl. Phys. Lett. 88, 192508 (2006).CrossRefGoogle Scholar
Moges, K., Honda, Y., Liu, H.-X., Uemura, T., Yamamoto, M., Miura, Y., Shirai, M., Phys. Rev. B Condens. Matter 93, 134403 (2016).CrossRefGoogle Scholar
Yakushiji, K., Takagi, H., Watanabe, N., Fukushima, A., Kikuchi, K., Kurashima, Y., Sugihara, A., Kubota, H., Yuasa, S., Appl. Phys. Express 10, 063002 (2017).CrossRefGoogle Scholar
Sukegawa, H., Hono, K., Appl. Surf. Sci. (forthcoming).Google Scholar
Shan, R., Sukegawa, H., Wang, W.H., Kodzuka, M., Furubayashi, T., Ohkubo, T., Mitani, S., Inomata, K., Hono, K., Phys. Rev. Lett. 102, 246601 (2009).CrossRefGoogle Scholar
Sukegawa, H., Xiu, H., Ohkubo, T., Furubayashi, T., Niizeki, T., Wang, W., Kasai, S., Mitani, S., Inomata, K., Hono, K., Appl. Phys. Lett. 96, 212505 (2010).CrossRefGoogle Scholar
Sukegawa, H., Inomata, K., Mitani, S., Appl. Phys. Lett. 105, 092403 (2014).CrossRefGoogle Scholar
Scheike, T., Sukegawa, H., Inomata, K., Ohkubo, T., Hono, K., Mitani, S., Appl. Phys. Express 9, 053004 (2016).CrossRefGoogle Scholar
Sukegawa, H., Hadorn, J.P., Wen, Z., Ohkubo, T., Mitani, S., Hono, K., Appl. Phys. Lett. 110, 112403 (2017).CrossRefGoogle Scholar