Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T02:54:21.844Z Has data issue: false hasContentIssue false

Materials for semiconductor devices that can bend, fold, twist, and stretch

Published online by Cambridge University Press:  12 June 2014

John A. Rogers*
Affiliation:
University of Illinois, USA; [email protected]
Get access

Abstract

New methods for the synthesis and deterministic assembly of advanced classes of nanomaterials enable integration of high-performence semiconductors with elastomeric substrates. These capabilities provide the foundations for a high-performance electronic and optoelectronic technology that can offer linear elastic mechanical responses to large strain deformations. The results create new opportunities in materials and device engineering, with important consequences in fields ranging from biomedicine to machine vision. This article summarizes the key materials science concepts and presents illustrative examples of their recent use in injectable, cellular-scale optoelectronic devices and in hemispherical compound eye cameras.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wagner, S., Bauer, S., MRS Bull. 37, 207 (2012).Google Scholar
Rogers, J.A., Someya, T., Huang, Y., Science 327, 1603 (2010).Google Scholar
Rogers, J.A., Lagally, M.G., Nuzzo, R.G., Nature 477, 45 (2011).Google Scholar
Khang, D.Y., Jiang, H., Huang, Y., Rogers, J.A., Science 311, 208 (2006).Google Scholar
Sun, Y., Choi, W.M., Jiang, H., Huang, Y., Rogers, J.A., Nat. Nanotechnol. 1, 201 (2006).Google Scholar
Xu, S., Zhang, Y., Cho, J., Lee, J., Huang, X., Jia, L., Fan, J.A., Su, Y., Su, J., Zhang, H., Cheng, H., Lu, B., Yu, C., Chuang, C., Kim, T.-I., Song, T., Shigeta, K., Kang, S., Dagdeviren, C., Petrov, I., Braun, P.V., Huang, Y., Paik, U., Rogers, J.A., Nat. Commun. (2013); doi:10.1038/ncomms2553.Google Scholar
Zhang, Y., Fu, H., Su, Y., Xu, S., Cheng, H., Fan, J.A., Hwang, K.-C., Rogers, J.A., Huang, Y., Acta Mater. 61, 7816 (2013).Google Scholar
Mack, S., Meitl, M.A., Baca, A.J., Zhu, Z.-T., Rogers, J.A., Appl. Phys. Lett. 88, 213101 (2006).CrossRefGoogle Scholar
Ko, H.C., Baca, A., Rogers, J.A., Nano Lett. 6, 2318 (2006).CrossRefGoogle Scholar
Kim, H., Brueckner, E., Song, J., Li, Y., Kim, S., Lu, C., Sulking, J., Choquette, K., Huang, Y., Nuzzo, R.G., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 108, 10072 (2011).Google Scholar
Carlson, A., Bowen, A.M., Huang, Y., Nuzzo, R.G., Rogers, J.A., Adv. Mater. 24, 5284 (2012).Google Scholar
Kim, D.-H., Ghaffari, R., Lu, N., Rogers, J.A., Annu. Rev. Biomed. Eng. 14, 113 (2012).Google Scholar
Kim, T.-I., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., An Pao, H., Kim, R.-H., Lu, C., Lee, S.D., Song, I.-S., Shin, G., Al-Hasani, R., Kim, S., Tan, M.P., Huang, Y., Omenetto, F.G., Rogers, J.A., Bruchas, M.R., Science 240, 211 (2013).Google Scholar
Li, Y., Shi, X., Song, J., Lu, C., Kim, T., McCall, J.G., Bruchas, M.R., Rogers, J.A., Huang, Y., Proc. R. Soc. London, Ser. A 469, 20130142 (2013).Google Scholar
Song, Y.M., Xie, Y., Malyarchuk, V., Xiao, J., Jung, I., Choi, K.-J., Liu, Z., Park, H., Lu, C., Kim, R.-H., Li, R., Crozier, K.B., Huang, Y., Rogers, J.A., Nature 497, 95 (2013).Google Scholar
Lu, C.F., Li, M., Xiao, J.L., Jung, I., Wu, J., Huang, Y., Hwang, K.-C., Rogers, J.A., ASME J. Appl. Mech. 80, 061022 (2013).Google Scholar