Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:36:53.387Z Has data issue: false hasContentIssue false

Materials for Multilayer Recording

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

An attractive feature of optical discs is their capacity. Recent research has indicated that the capacity of optical discs can be increased by using multiple layers of bitwise data. Layers are spaced along the depth dimension of the discs. Individual layers are recorded and information is retrieved in a manner that is very similar to conventional optical disc systems using a single layer. The data capacity of each layer is nearly equal to the capacity of a single layer, thus increasing the capacity of a disc by a factor equal to the number of layers. In fact, dual-layer optical discs are already commercially available. With some storage materials, it is possible to record hundreds of data layers. However, system engineering trade-offs, like readout speed, are of concern. More conventional – materials can also be used for multilayer recording, but the number of layers is limited by the transmission properties of each layer. This article reviews the materials systems for multilayer recording, the interplay between materials properties and performance, and the optical systems used for multilayer recording.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Milster, T.D.The Optics Encyclopedia: Basic Foundations and Practical Applications, Vol. 1, Brown, T.G., Creath, K.Kogelnik, H.Kriss, M.A., Schmit, J. and Weber, M.J., eds. (Wiley-VCH, Berlin, 2003) p. 227.Google Scholar
2Strickler, J.H. and Webb, W.W.Adv. Mater. 5 (6) (1993) p. 479.CrossRefGoogle Scholar
3Ishikawa, M.Kawata, Y.Egami, C.Sugihara, O. and Okamoto, N.Opt. Lett. 23 (22) (1998) p. 1781.CrossRefGoogle Scholar
4Kawata, Y.Ueki, H.Hashimoto, Y. and Kawata, S.Appl. Opt. 34 (20) (1995) p. 4105.CrossRefGoogle Scholar
5Toriumi, A.Kawata, S. and Gu, M.Opt. Lett. 23 (24) (1998) p. 1924.CrossRefGoogle Scholar
6Wilson, T.Kawata, Y. and Kawata, S.Opt. Lett. 21 (13) (1996) p. 1003.CrossRefGoogle Scholar
7Shiono, T.Itoh, T. and Nishino, S.Jpn. J. Appl. Phys. 44 (5B) (2005) p. 35559.CrossRefGoogle Scholar
8Reyes, J.A.-Equeda, Vabre, L.Lecaque, R.Ramaz, F.Forget, B.C.Dubois, A.Briat, B.Boccara, C.Roger, G.Canva, M.Levy, Y.Chaput, F. and Boilot, J.P.Opt. Commun. 220 (2003) p. 59.CrossRefGoogle Scholar
9Parthenopoulos, D.A. and Rentzepis, P.M.Science 245 (1989) p. 843.CrossRefGoogle Scholar
10Wang, W.W.Esener, S.C.McCormick, F.B.Cokgor, I.Dvornikov, A.S. and Rentzepis, P.M.Opt. Lett. 22 (8) (1997) p. 558.CrossRefGoogle Scholar
11Dvornikov, A.S.Liang, Y.Tomov, I.V. and Rentzepis, P.M.Proc. SPIE 3802 (1999) p. 192.CrossRefGoogle Scholar
12Liang, Y.Dvornikov, A.D. and Rentzepis, P.M.Opt. Commun. 223 (2003) p. 61.CrossRefGoogle Scholar
13Zhang, Y.Butz, J.Curtis, J.Beaudry, N.Bletscher, W.L.Erwin, K.J.Knight, D.Milster, T.D. and Walker, E.Opt. Expr. 12 (12) (2004) p. 2662.CrossRefGoogle Scholar
14Akselrod, M.S.Orlov, S.S. and Akselrod, G.M.Jpn. J. Appl. Phys. 43 (7B) (2004) p. 4908.CrossRefGoogle Scholar
15Tominaga, J.Nakano, T. and Atoda, N.Appl. Phys. Lett. 73 (15) (1998) p. 2078.CrossRefGoogle Scholar
16Fuji, H.Kikukawa, T. and Tominaga, J.Jap. J. Appl. Phys. 43 (Part 1: 7A) (2004) p. 4212.CrossRefGoogle Scholar
17Wu, F.H.Rambabu, U.Milster, T.D. and Shieh, H.P.OSA Trends in Optics and Photonics (TOPS) Vol. 88, Optical Data Storage, OSA Technical Digest, Post-Conference Edition (Optical Society of America, Washington, D.C., 2003) p. 27.Google Scholar
18Wu, F.H. and Shieh, H.P.Jpn. J. Appl. Phys. 42 (2B) (2003) p. 820.CrossRefGoogle Scholar
19Zhang, Y. “System and Material Aspects of Volumetric Bitwise Optical Data Storage,” PhD dissertation, University of Arizona (2004).Google Scholar
20Ichimura, I.Hashimoto, G.Saito, K.Yamasaki, T.Yukumoto, T.Maruyama, T. and Osato, K.presented at ISOM'04 Int. Symp. Optical Memory, Jeju Island, Korea (October 11–15, 2004).Google Scholar
21Park, S.K. and Milster, T.D. “Characteristics and limitations of multiple-layered optical memories,” Appl. Opt. (2006) submitted.Google Scholar
22Hirotsune, A.Mukoh, M. and Terao, M. presented at ISOM'05 Int. Symp. Optical Memory, Honolulu, Hawaii (July 10–14, 2005).Google Scholar
23Walker, E.P.Zheng, X.McCormick, F.B.Zhang, H.Kim, N.Costa, J. and Dvornikov, A.S.Proc. SPIE 4090 (2000) p. 179.CrossRefGoogle Scholar
24Miller, T.Butz, J. and Milster, T.D. in OSA Trends in Optics and Photonics (TOPS) Vol. 88, Optical Data Storage (Optical Society of America, Washington, D.C., 2003) p. 187.Google Scholar
25Park, S.K.Milster, T.D.Miller, T.M.Butz, J. and Bletscher, W.Jpn. J. Appl. Phys. 44 (5B) (2005) p. 3442.CrossRefGoogle Scholar
26Walker, E.P.Feng, W.Zhang, Y.Zhang, H.McCormick, F.B. and Esener, S. in Proc. ISOM/ODS 2002 Int. Symp. Optical Memory and Optical Data Storage, Waikoloa, Hawaii (2002) p. 147.Google Scholar
27Esener, S.Walker, E.P.Zhang, Y.Dvornikov, A. and Rentzepis, P.M.Proc. SPIE 4988 (2003) p. 93.CrossRefGoogle Scholar
28Kawata, Y.Nakano, M. and Lee, S.C.Opt. Eng. 40 (10) (2001) p. 2247.Google Scholar
29Zhang, Y.Milster, T.D.Kim, J.S. and Park, S.K.Jpn. J. Appl. Phys. 43 (7B) (2004) p. 4929.CrossRefGoogle Scholar
30Zhang, Y.Dvornikov, A.Taketomi, Y.Walker, E.P.Rentzepis, P.M. and Esener, S.Proc. SPIE 5362 (2004) p. 1.CrossRefGoogle Scholar