Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:14:09.013Z Has data issue: false hasContentIssue false

Materials for Micro- and Nanofluidics

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last two decades, our ability to create networks of fluidic channels of submillimeter or even sub-micrometer diameters has led to a wide range of microchemical applications. Whereas early efforts were directed toward the development of microanalysis systems, in more recent times the development of microreactors and tools for biotechnology and basic biological studies has emerged. This issue of MRS Bulletin highlights the many different ways in which material properties are crucial in the fabrication, assembly, and operation of micro- and nanofluidic systems. Choice-of-material considerations range from an assessment of whether a desired channel design can be microfabricated in a certain material to whether the material is compatible with the operating conditions (i.e., pressure, temperature) and the chemical composition (solvent, solutes) of the fluid used. Moreover, in certain cases, specific surface or bulk material properties can be used to the benefit of the application of the device. In the development of today's wide range of integrated micro- and nanofluidic applications, a common challenge emerges: meeting the often contradictory set of constraints imposed on the physical and chemical properties of materials by the envisioned applications. This issue reviews these challenges and their solutions and provides an outlook on how the ingenious use of existing and new materials can spur the development of ever more sophisticated micro- and nanofluidic systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

References

1Jacobson, S.C., Koutny, L.B., Hergenröder, R., Moore, A.W. Jr, and Ramsey, J.M., Anal. Chem. 66 (1994) p. 3472; D.J. Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser, and A. Manz, Science 261 (1993) p. 895; A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, H. Ludi, and H.M. Widmer, Chimia 45 (1991) p. 103.CrossRefGoogle Scholar
2Ajmera, S., Losey, M., and Jensen, K.F., AIChE J. 47 (2001) p. 1639.Google Scholar
3Wootton, R.C., Fortt, R., and de Mello, A.J., Lab Chip 2 (2002) p. 5.CrossRefGoogle Scholar
4Wilcox, D.L. Sr , Burdon, J.W., Changrani, R., Chou, C.-F., Dai, S., Koripella, R., Oliver, M., Sadler, D., von Allmen, P., and Zenhausern, F., in Materials Science of Microelectromechanical Systems (MEMS) Devices IV, edited by Ayón, A.A., Buchheit, T.E., Kahn, H., and Spearing, S.M., (Mater. Res. Soc. Symp. Proc. 687, Warrendale, Pa., 2001) p. 225.Google Scholar
5Shestopalov, I., Tice, J.D., and Ismagilov, R.F., Lab Chip 4 (2004) p. 316; A. Günther, M. Jhunjhunwala, M. Thalmann, M.A. Schmidt, and K.F. Jensen, Langmuir 21 (2005) p. 1547.CrossRefGoogle Scholar
6Kelley, S.C., Deluga, G.A., and Smyrl, W.H., Electrochem. Solid-State Lett. 3 (2000) p. 407; J. Li, C. Moore, and P.A.Kohl, J. Power Sources 138 (2004) p. 211; E.R.Choban, L.J.Markoski, A. Wieckowski, P.J.A. Kenis, J. Power Sources 128 (2004) p. 54.Google Scholar
7Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D.E., and Whitesides, G.M., Nature 411 (2001) p. 1016.CrossRefGoogle Scholar
8Zheng, B., Roach, L.S., and Ismagilov, R.F, J. Am. Chem. Soc. 125 (37) (2003) p. 11170.Google Scholar
9Madou, M., Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, 1997).Google Scholar
10Hibara, A., Iwayama, S., Matsuoka, S., Ueno, M., Kikutani, Y., Tokeshi, M., and Kitamori, T., Anal. Chem. 77 (3) (2005) p. 943.CrossRefGoogle Scholar
11Duffy, D.C., McDonald, J.C., Schueller, O.J.A., and Whitesides, G.M., Anal. Chem. 70 (1998) p. 4974.CrossRefGoogle Scholar
12Jo, B.H., Van Lerberghe, L.M., Motsegood, K.M., and Beebe, D.J., J. Microelectromech. Sys. 9 (1) (2000) p. 76.CrossRefGoogle Scholar
13See, for example, Potomac Laser Home Page, www.potomac-laser.com (accessed December 2005).Google Scholar
14Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, F.P., Jones, D., Heldsinger, D., Namasivayam, V., Mastrangelo, C.H., and Burke, D.T., Science 282 (1998) p. 484.Google Scholar
15Sung, I.-K., Christian, N., Mitchell, M., Kim, D.P., and Kenis, P.J.A., Adv. Funct. Mater. 15 (2005) p. 1336.CrossRefGoogle Scholar
16Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A., and Quake, S.R., Science 287 (2000) p. 113.CrossRefGoogle Scholar
17Thorsen, T., Maerkl, S.J., and Quake, S.R., Science 298 (2002) p. 580.Google Scholar
18Kartalov, E.P. and Quake, S.R., Nucleic Acids Res. 32 (9) (2004) p. 2873.CrossRefGoogle Scholar
19Hansen, C.L., Skordalakes, E., Berger, J.M., and Quake, S.R., Proc. Natl. Acad. Sci. USA 99 (26) (2002) p. 16531.CrossRefGoogle Scholar
20Fluidic Corp., Integrated Fluidic Circuits (IFCs) for the Life Sciences–Large Scale Home Page, www.fluidigm.com (accessed December 2005).Google Scholar
21Shen, N.Y., Liu, Z.T., Jacquot, B.C., Minch, B.A., and Kan, E.C., Sens. Actuators B 102 (1) (2004) p. 35.Google Scholar
22Adams, M.L., Loncar, M., Scherer, A., and Qiu, Y.M., IEEE J. Selected Areas in Commun. 23 (7) (2005) p. 1348.Google Scholar
23Rolland, J.P., Van Dam, R.M., Schorzman, D.A., Quake, S.R., and DeSimone, J.M., J. Am. Chem. Soc. 126 (8) (2004) p. 2322; Liquidia Technologies Home Page, www.liquidia.com (accessed December 2005).CrossRefGoogle Scholar
24Therriault, D., White, S., and Lewis, J.A., Nature Mater. 2 (2003) p. 265; D. Therriault, R.F. Shepherd, S.R. White, and J.A. Lewis, Adv. Mater. 17 (4) (2005) p. 395.Google Scholar
25Ke, K., Hasselbrink, E.F., and Hunt, A.J., Anal. Chem. 77 (2005) p. 5083.CrossRefGoogle Scholar