Article contents
Materials for Micro- and Nanofluidics
Published online by Cambridge University Press: 31 January 2011
Abstract
Over the last two decades, our ability to create networks of fluidic channels of submillimeter or even sub-micrometer diameters has led to a wide range of microchemical applications. Whereas early efforts were directed toward the development of microanalysis systems, in more recent times the development of microreactors and tools for biotechnology and basic biological studies has emerged. This issue of MRS Bulletin highlights the many different ways in which material properties are crucial in the fabrication, assembly, and operation of micro- and nanofluidic systems. Choice-of-material considerations range from an assessment of whether a desired channel design can be microfabricated in a certain material to whether the material is compatible with the operating conditions (i.e., pressure, temperature) and the chemical composition (solvent, solutes) of the fluid used. Moreover, in certain cases, specific surface or bulk material properties can be used to the benefit of the application of the device. In the development of today's wide range of integrated micro- and nanofluidic applications, a common challenge emerges: meeting the often contradictory set of constraints imposed on the physical and chemical properties of materials by the envisioned applications. This issue reviews these challenges and their solutions and provides an outlook on how the ingenious use of existing and new materials can spur the development of ever more sophisticated micro- and nanofluidic systems.
Keywords
- Type
- Research Article
- Information
- MRS Bulletin , Volume 31 , Issue 2: Materials for Micro- and Nanofluidics , February 2006 , pp. 87 - 94
- Copyright
- Copyright © Materials Research Society 2006
References
- 18
- Cited by