Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T18:13:11.380Z Has data issue: false hasContentIssue false

Materials Engineering of Lipid Bilayers for Drug Carrier Performance

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The liquid-phase lipid bilayer is a unique engineering material. Biologically, it holds a central position in cellular life, providing the structural basis for the membrane that surrounds every cell on the planet. From a materials perspective, it is essentially a 4-nm-thick, water-insoluble sheet of 2-poise oil. Artificial membranes were “discovered” 35 years ago. It was soon recognized that liposomes could have a range of potential uses, and investigators sought to exploit the obvious capsular and biocompatibility properties of the membrane in applications such as liposome drug delivery. Since 1966, some 18,000 papers on liposomes have appeared in the literature (listed on Medline, and see References 4–7 for reviews), and 260 patents have been issued describing the use of liposomes in the pharmaceutical industry. These patented applications have included the delivery of cancer drugs, intracellular drug delivery, inhalation, topical drugs, gene therapy, proteins, peptides, amino acids, vaccines, targeted liposomes, lipophilic drugs, and liposome production, separation, and analysis. A huge database therefore exists with which to establish boundary conditions for predicting under which circumstances the encapsulation of drugs in liposomes or other carriers may be expected to result in improved therapy. Despite this enormous effort, only a few formulations, principally for amphotericin (an antifungal drug) and anthra-cyclins (anticancer drugs), have been approved and marketed, heralding the promise and potential that these versatile lipid-bilayer materials present. The reasons for this limited success are many, not the least of which is that the cost of developing a new pharmaceutical product can be several hundred million dollars.

Type
Materials Science of the Cell
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bangham, A.D., Standish, M.M., and Watkins, J.C., J. Mol. Biol. 13 (1965) p. 238.CrossRefGoogle Scholar
2.Gregoriadis, G, N. Engl. J. Med. 295 (1976) pp. 704 and 765.CrossRefGoogle Scholar
3.Szoka, F.C., J. Liposome Res. 8 (3) (1998) p. vii.Google Scholar
4.Barenholz, Y., Chem. Phys. Lipids 64 (1993) p. 1.CrossRefGoogle Scholar
5.Gregoriadis, G., ed., Liposome Technology, vols. I, II, and IV (CRC Press, Boca Raton, FL, 1993).Google Scholar
6.Gregoriadis, G. and Alison, A.C., Liposomes in Biological Systems (J. Wiley & Sons, New York, 1980).Google Scholar
7.Janoff, A.S., ed., Liposomes: Rational Design. (Marcel Dekker, New York, 1999).Google Scholar
8.Bloom, M., Evans, E., and Mouritsen, O.G., Q. Rev. Biophys. 24 (3) (1991) p. 293.CrossRefGoogle Scholar
9.Knight, C.G., ed., Liposomes: From Physical Structure to Therapeutic Applications (Elsevier Biomedical, Amsterdam, 1981).Google Scholar
10.Lasic, D.D., Liposomes: From Physics to Applications (Elsevier Biomedical, Amsterdam, 1992).Google Scholar
11.Lasic, D.D. and Needham, D., Chem. Rev. 95 (1993) p. 2601.CrossRefGoogle Scholar
12.Ostro, M., Liposomes (Marcel Dekker, New York, 1983).Google Scholar
13.Kwok, R. and Evans, E., Biophys. J. 35 (1981) p. 637.CrossRefGoogle Scholar
14.Needham, D. and Zhelev, D.V., in Vesicles, edited by Rosoff, M. (Marcel Dekker, New York, 1996) p. 373.Google Scholar
15.Needham, D. and Zhelev, D.V., in Giant Vesicles, edited by Luisi, P.W.A.L. (Wiley & Sons, New York, 1999) in press.Google Scholar
16.Merkel, R.Nassoy, P., Leung, A., Ritchie, K., and Evans, E., Nature 397 (1999) p. 50.CrossRefGoogle Scholar
17.Cullis, P.R., Hope, M.J., Bally, M.B., Madden, T.D., Mayer, L.D., and Fenske, D.B., Biochim. Biophys. Acta—Rev. Biomembranes 1331 (1997) p. 187.CrossRefGoogle Scholar
18.Hope, M.J., Bally, M.B., Webb, G., and Cullis, P.R., Biochim. Biophys. Acta 812 (1985) p. 55.CrossRefGoogle Scholar
19.New, R.R.C., ed., Liposomes: A Practical Approach (IRL Press, Oxford, 1990).Google Scholar
20.Oleson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., and Papahadjopoulos, D., Biochim. Biophys. Acta 557 (1979) p. 9.CrossRefGoogle Scholar
21.Evans, E. and Skalak, R., Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, FL, 1980).Google Scholar
22.Needham, D. and Nunn, R.S., Biophys. J. 58 (1990) p. 997.CrossRefGoogle Scholar
23.Evans, E. and Rawicz, W., Phys. Rev. Lett. 64 (1990) p. 2094.CrossRefGoogle Scholar
24.Olbrich, K.C., Rawicz, W., Needham, D., and Evans, E., “Water Permeability and Mechanical Strength of Polyunsaturated Phospholipid Bilayers” (submitted for publication).Google Scholar
25.Needham, D., in Permeability and Stability of Lipid Bilayers, edited by Disalvo, E.A. and Simon, S.A. (CRC Press, Boca Raton, FL, 1994) p. 49.Google Scholar
26.Evans, E. (private communication).Google Scholar
27.Mayer, L.D., Tai, L.C.L., Bally, M.B., Mitilenes, G.N., Ginsberg, R.S., and Cullis, P.R., Biochim. Biophys. Acta 1025 (1990) p. 143.CrossRefGoogle Scholar
28.Sharma, A. and Straubinger, R.M., Pharm. Res. 11 (1994) p. 89.CrossRefGoogle Scholar
29.Gruen, D.W. and Haydon, D.A., Biophys. J. 33 (1981) p. 167.CrossRefGoogle Scholar
30.Needham, D. and Haydon, D.A., Biophys. J. 41 (1983) p. 251.CrossRefGoogle Scholar
31.Requena, J., Billett, D.F., and Haydon, D.A., Proc. Roy. Soc. London, Ser. A 347 (1979) p. 141.Google Scholar
32.Evans, E., Rawicz, W., and Hofmann, A.F., in Bile Acids in Gastroenterology: Basic & Clinical Advances (Proc. of the XIIIth International Bile Acid Meeting, Falk Symposium 80), edited by Hoffmann, A.F., Paumgartner, G., and Stiehl, A. (Kluwer Academic Publishers, Dordrecht, Netherlands, 1995) p. 59.Google Scholar
33.Needham, D., Stoicheva, N., and Zhelev, D.V., Biophys. J. 73 (1997) p. 2615.CrossRefGoogle Scholar
34.Needham, D. and Zhelev, D.V., Ann. Biomed. Egr. 23 (1995) p. 287.CrossRefGoogle Scholar
35.Sarpal, R. and Needham, D., J. Liposome Res. 8 (2) (1998) p. 147.Google Scholar
36.Olbrich, K.C. and Needham, D. (unpublished results).Google Scholar
37.Gregoriadis, G., in Stealth Liposomes, edited by Lasic, D.D. and Martin, F.J. (CRC Press, Boca Raton, FL, 1995) p. 7.Google Scholar
38.Gregoriadis, G. and Ryman, B.E., Eur. J. Biochem. 24 (1972) p. 485.CrossRefGoogle Scholar
39.Bradley, A.J., Devine, D.V., Ansell, S.M., Janzen, J., and Brooks, D.E., Arch. Biochem. Biophys. 357 (1998) p. 185.CrossRefGoogle Scholar
40.Chonn, A., Semple, S.C., and Cullis, P.R., J. Biol. Client. 267 (1992) p. 18759.Google Scholar
41.Dvorak, H.F., Nagy, J.A., Dvorak, J.T., and Dvorak, A.M., Am. J. Pathol. 133 (1) (1988) p. 95.Google Scholar
42.Harasym, T.O., Cullis, P.R., and Bally, M.B., Cancer Chemother. Pharmacol. 40 (1997) p. 309.CrossRefGoogle Scholar
43.Huang, S.K., Lee, K.-D., Hong, K., Friend, D.S., and Papahadjopoulos, D., Cancer Res. 52 (1992) p. 5135.Google Scholar
44.Wu, N.Z., Da, D., Rudoll, T.L., Needham, D., and Dewhirst, M.W., Cancer Res. 53 (1993) p. 3765.Google Scholar
45.Wu, N.Z., Klitzman, B., Rosner, G., Needham, D., and Dewhirst, M.W., Microvasc. Res. 46 (1993b) p. 231.CrossRefGoogle Scholar
46.Senior, J., J. Crit. Rev. Ther. Drug. Carr. Syst. 3 (1987) p. 123.Google Scholar
47.Semple, S.C., Chonn, A., and Cullis, P.R., Biochemistry 35 (1996) p. 2521.CrossRefGoogle Scholar
48.Huang, L., J. Liposome Res. 2 (3) (1992).CrossRefGoogle Scholar
49.Klibanov, A.L., Maruyama, K., Torchilin, V.P., and Huang, L., FEBS Lett. 268 (1990) p. 235.CrossRefGoogle Scholar
50.Mori, A., Klibanov, A.L., Torchilin, V.P., and Huang, L., FEBS Lett. 284 (1991) p. 263.CrossRefGoogle Scholar
51.Torchilin, V.P. and Papisov, M.I., J. Liposome Res. 4 (1994) p. 725.CrossRefGoogle Scholar
52.Woodie, M.C. and Lasic, D.D., Biochim. Biophys. Acta 1113 (1992) p. 171.CrossRefGoogle Scholar
53.Ansell, S.M., Kojic, L.D., Hankins, J.S., Sekirov, L., Boey, A., Lee, D.K., Bennett, A.R., Klimuk, S.K., Harasym, T.O., Santos, N.D., and Semple, S.C., Bioconjugate Chem. (1999) in press.Google Scholar
54.Zalipsky, S., Adv. Drug Delivery Rev. 16 (2/3) (1995) p. 157.CrossRefGoogle Scholar
55.Alexander, S., J. Phys. (Paris) 38 (1977) p. 983.CrossRefGoogle Scholar
56.De Gennes, P.G., Adv. Colloid Interface Sci. 27 (1987) p. 189.CrossRefGoogle Scholar
57.Dolan, A. and Edwards, F., Proc. R. Soc. London, Ser. A 337 (1974) p. 509.Google Scholar
58.Evans, E., Klingenberg, D.J., Rawicz, W., and Szoka, F.C., Langmuir 12 (1996) p. 3031.CrossRefGoogle Scholar
59.Jeon, S.I., Lee, J.H., Andrade, J.D., and De Gennes, P.G., J. Colloid Interface Sci. 142 (1991) p. 149.CrossRefGoogle Scholar
60.Kenworthy, A.K., Hristova, K., McIntosh, T.J., and Needham, D., Biophys. J. 68 (1995a) p. 1921.CrossRefGoogle Scholar
61.Kenworthy, A.K., Simon, S.A., and McIntosh, T.J., Biophys. J. 68 (1995) p. 1903.CrossRefGoogle Scholar
62.Kuhl, T.L., Leckband, D.E., Lasic, D.D., and Israelachvili, J.N., Biophys. J. 66 (1994) p. 1479.CrossRefGoogle Scholar
63.Milner, S.T., Europhys. Lett. 7 (1988) p. 695.CrossRefGoogle Scholar
64.Milner, S.T., Science 251 (1991) p. 905.CrossRefGoogle Scholar
65.Milner, S.T., Witten, T.A., and Cates, M.E., Macromolecules 21 (1988) p. 2610.CrossRefGoogle Scholar
66.Patel, S., Tirrell, M., and Hadziioannou, G., Colloids Surf. 31 (1988) p. 157.CrossRefGoogle Scholar
67.Torchilin, V.P., Omelyananko, V.G., Papisov, M.I., Bogdanov, J.A.A., Trubetskoy, V.S., Herron, J.N., and Gentry, C.A., Biochim. Biophys. Acta 195 (1994) p. 11.CrossRefGoogle Scholar
68.Needham, D., McIntosh, T.J., and Zhelev, D.V., in Liposomes: Rational Design, edited by Janoff, A.S. (Marcel Dekker, New York, 1999) p. 13.Google Scholar
69.Noppl-Simson, D. and Needham, D., Biophys. J. 70 (1996) p. 1391.CrossRefGoogle Scholar
70.Needham, D., Mills, J., and Eichenbaum, G.M., Faraday Discuss. 111 (1999) p. 103.CrossRefGoogle Scholar
71.Beduaddo, F.K., Tang, P., Xu, Y., and Huang, L., Pharm. Res. 13 (5) (1996) p. 710.CrossRefGoogle Scholar
72.Papahadjopoulos, D. and Gabizon, A., Ann. N.Y. Acad. Sci. 507 (1987) p. 64.CrossRefGoogle Scholar
73.Allen, T.M. and Stuart, D.D., in Liposomes: Rational Design, edited by Janoff, A.S. (Marcel Dekker, New York, 1999) p. 63.Google Scholar
74.Dewhirst, M.W. and Needham, D., in Stealth Liposomes, edited by Lasic, D.D. and Martin, F.J. (CRC Press, Boca Raton, FL, 1995) p. 127.Google Scholar
75.Needham, D., Hristova, K., McIntosh, T.J., Dewhirst, M.W., Wu, N., and Lasic, D.D., J. Liposome Res. 2 (1992) p. 411.CrossRefGoogle Scholar
76.Ahmad, I., Longnecker, M., Samuel, J., and Allen, T.M., Cancer Res. 55 (1993) p. 1484.Google Scholar
77.Kirpotin, D.B., Park, J.W., Hong, K., Shao, Y., Shalaby, R., Colbern, G., Benz, C., and Papahadjopoulos, D., J. Liposome Res. 7 (1997) p. 391.CrossRefGoogle Scholar
78.Maruyama, K., Kennel, S., and Huang, L., Proc. Natl. Acad. Sci. U.S.A. 87 (1990) p. 5744.CrossRefGoogle Scholar
79.Kim, D.H., Klibanov, A.L., and Needham, D., “The Influence of Tiered Layers of Surface-Grafted Poly(ethylene glycol) on Receptor-Ligand-Mediated Adhesion Between Phospholipid Monolayer-Stabilized Microbubbles and Coated Glass Beads” (submitted for publication).Google Scholar
80.Tirrell, M., Parsonage, E., Watanabe, H., and Dhoot, S., Polymer J. 23 (5) (1991) p. 641.CrossRefGoogle Scholar
81.Campos, S. and Shapiro, C., in Liposomes: Rational Design, edited by Janoff, A.S. (Marcel Dekker, New York, 1999) p. 363.Google Scholar
82.Gabizon, A. and Barenholtz, Y., in Liposomes: Rational Design, edited by Janoff, A.S. (Marcel Dekker, New York, 1999) p. 343.Google Scholar
83.Adlakha-Hutcheon, G., Bally, M.B., Shew, C.R., and Madden, T.D., Nature Biotechnology 17 (August 1999) p. 775.CrossRefGoogle Scholar
84.Adlakha-Hutcheon, G., Chang, C.W., Edwards, K., and Madden, T.D., Biochim. Biophys. Acta (1999) in press.Google Scholar
85.Holland, J.W., Cullis, P.R., and Madden, T.D., Biochemistry 35 (1996) p. 2610.CrossRefGoogle Scholar
86.Conner, J., Yatvin, M.B., and Huang, L., Proc. Natl. Acad. Sci. U.S.A. 81 (1984) p. 1751.Google Scholar
87.Mills, J.K., Eichenbaum, G., Case, N., and Needham, D., J. Liposome Res. 9 (1999) p. 275.CrossRefGoogle Scholar
88.Thomas, J.L. and Tirrell, D.A., Acc. Chem. Res. 25 (1992) p. 336.CrossRefGoogle Scholar
89.Rillema, J.A., Osmialowski, E.C., and Linebaugh, B.E., Biochim. Biophys. Acta 617 (1980) p. 150.CrossRefGoogle Scholar
90.Kiser, P.F., Wilson, G., and Needham, D., Nature 394 (1998) p. 459.CrossRefGoogle Scholar
91.Needham, D., Electropermeabilization/Fusion of Lipid Vesicles and Cells, NIH 5R29 GM 40162 (National Institutes of Health, Washington, DC, 1988).Google Scholar
92.Titomirov, A.V., Sukharev, S., and Kistanova, E., Biochim. Biophys. Acta 1088 (1991) p. 131.CrossRefGoogle Scholar
93.Kiser, P.F., Needham, D., and Wilson, G., “Lipid-Coated Microhydrogels for Triggered Release of Doxorubicin” (submitted for publication).Google Scholar
94.Papahadjopoulos, D., Jacobsen, K., Nir, S., and Isac, T., Biochim. Biophys. Acta 311 (1973) p. 330.CrossRefGoogle Scholar
95.Mouritsen, O.G., Jorgensen, K., and Honger, T., in Permeability and Stability of Lipid Bilayers, edited by Disalvo, E.A. and Simon, S.A. (CRC Press, Boca Raton FL, 1994) p. 137.Google Scholar
96.Mouritsen, O.G. and Zuckermann, M.J., Phys. Rev. Lett. 58 (1987) p. 389.CrossRefGoogle Scholar
97.Kim, D.H. (unpublished results).Google Scholar
98.Demel, R.A. and De Kruyff, B., Biochim. Biophys. Acta 457 (1976) p. 109.CrossRefGoogle Scholar
99.Chowdhry, B.Z., Lipka, G., Dalziel, A.W., and Strurtevant, J.M., Biophys. J. 45 (1984) p. 901.CrossRefGoogle Scholar
100.Yatvin, M.B., Weinstein, J.N., Dennis, W.H., and Blumenthal, R., Science 202 (1978) p. 1290.CrossRefGoogle Scholar
101.Bates, D.A. and McKillop, W.J., Cancer Res. 46 (1986) p. 5477.Google Scholar
102.Herman, T.S., Cancer Res. 43 (1983) p. 511.Google Scholar
103.Bassett, J.B., Anderson, R.U., and Tacker, J.R., J. Urology 135 (1985) p. 612.CrossRefGoogle Scholar
104.Maruyama, K., Unezaki, S., Takahashi, N., and Iwatsuru, M., Biochim. Biophys. Acta 1149 (1993) p. 209.CrossRefGoogle Scholar
105.Gaber, M.H., Hong, K., Huang, S.K., and Papahadjopoulos, D., Pharmacol. Res. 12 (1995) p. 1407.CrossRefGoogle Scholar
106.Merlin, J.-L., Eur. J. Cancer 27 (8) (1991) p. 1031.CrossRefGoogle Scholar
107.Gaber, M.H., Ning, Z.W., Hong, K., Huang, S.K., Dewhirst, M.W., and Papahadjopoulos, D., Intl. J. Radiat. Oncol., Biol., Phys. 36 (5) (1996) p. 1177.CrossRefGoogle Scholar
108.Magin, R.L. and Weinstein, J.N., in Liposome Technology, edited by Gregoriadis, G. (CRC Press, Boca Raton, FL, 1983) p. 137.Google Scholar
109.Kong, G. and Dewhirst, M.W., Int. J. Hyperthermia (1999) in press.Google Scholar