Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T18:15:58.485Z Has data issue: false hasContentIssue false

Materials Characterization of Alternative Gate Dielectrics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Continued scaling of microelectronic devices is demanding that alternatives to SiO2 as the gate dielectric be developed soon. This in turn has placed enormous pressure on the abilities of physical characterization techniques to address critical issues such as film and interface structure and composition, transport properties, and thermal or chemical stability. This article summarizes the strengths and capabilities of four techniques used for the materials characterization of alternative gate dielectrics: scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), medium-energy ion scattering (MEIS), infrared-absorption spectroscopy (IRAS), and x-ray photoelectron spectroscopy (XPS). The complementary nature of these techniques has allowed for a detailed picture of the various properties of alternative gate dielectrics, and in particular of the dielectric/silicon interface. Critical issues and features of several important alternative gate dielectrics, ZrO2, AI2O3, Y2O3, and Gd2O3, are explored in light of the well-studied SiO2/Si system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Browning, N.D., Chisholm, M.M., and Pennycook, S.J., Nature 366 (1993) p. 143.CrossRefGoogle Scholar
2.Muller, D.A., Tzou, Y., Raj, R., and Silcox, J., Nature 366 (1993) p. 725.CrossRefGoogle Scholar
3.Batson, P.E., Nature 366 (1993) p. 728.CrossRefGoogle Scholar
4.Neaton, J.B., Muller, D.A., and Ashcroft, N.W., Phys. Rev. Lett. 85 (2000) p. 1298.CrossRefGoogle Scholar
5.Egerton, R.F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum Publishers, New York, 1996).CrossRefGoogle Scholar
6.Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., and Timp, G., Nature 399 (1999) p. 758.CrossRefGoogle Scholar
7.Muller, D.A., in Proc. 2000 Int. Conf. on Characterization and Metrology for ULSI Technology (American Institute of Physics, College Park, MD, 2000) p. 500.Google Scholar
8.van der Veen, J.F., Surf. Sci. Rep. 5 (1985) p. 199.CrossRefGoogle Scholar
9.Gusev, E.P., Lu, H.C., Gustafsson, T., and Garfunkel, E., Phys. Rev. B 52 (1995) p. 1759.CrossRefGoogle Scholar
10.Lu, H.C., Gusev, E.P., Garfunkel, E., Busch, B.W., Gustafsson, T., Sorsch, T.W., and Green, M.L., J. Appl. Phys. 87 (2000) p. 1550.CrossRefGoogle Scholar
11.Schulte, W.H., Busch, B., Garfunkel, E., and Gustafsson, T., in Handbook of Silicon Semiconductor Metrology, edited by Diebold, A.C. (Marcel Dekker, New York, 2001) p. 811.Google Scholar
12.Chabal, Y.J., Weldon, M.K., and Queeney, K.T., in Fundamental Aspects of Silicon Oxidation, Springer Series in Materials Science, Vol. 46, edited by Chabal, Y.J. (Springer, Berlin, 2001) p. 143.CrossRefGoogle Scholar
13.Queeney, K.T., Weldon, M.K., Chang, J.P., Chabal, Y.J., Gurevich, A.B., Sapjeta, J., and Opila, R.L., J. Appl. Phys. 87 (2000) p. 1322.CrossRefGoogle Scholar
14.Himpsel, F.J., McFeely, F.R., Taleb-Ibrahimi, A., Yarmoff, J.A., and Hollinger, G., Phys. Rev. B 38 (1988) p. 6084.CrossRefGoogle Scholar
15.Chang, J.P., Green, M.L., Donnelly, V.M., Opila, R.L. Jr, Eng, J., Sapjeta, J., Silverman, P.J., Weir, B., Lu, H.C., Gustafsson, T., and Garfunkel, E., J. Appl. Phys. 87 (2000) p. 4449.CrossRefGoogle Scholar
16.Copel, M., Gribelyuk, M., and Gusev, E.P., Appl. Phys. Lett. 76 (2000) p. 436.CrossRefGoogle Scholar
17.Kwo, J. (unpublished).Google Scholar
18.Jeon, T.S., White, J.M., and Kwong, D.L., Appl. Phys. Lett. 78 (2001) p. 368.CrossRefGoogle Scholar
19.Sun, Y.-M., Lozano, J., Ho, H., Park, H.J., Veldman, S., and White, J.M., Appl. Surf. Sci. 161 (2000) p. 115.CrossRefGoogle Scholar
20.Lee, B.H., Kang, L., Nieh, R., Qi, W.J., and Lee, J.C., Appl. Phys. Lett. 76 (2000) p. 1926.CrossRefGoogle Scholar
21.Busch, B.W., Schulte, W.H., Garfunkel, E., Gustafsson, T., Qi, W., Nieh, R., and Lee, J., Phys. Rev. B 62 (2000) p. R13290.CrossRefGoogle Scholar
22.Muller, D.A. and Wilk, G.D., Appl. Phys. Lett. 79 (2001) p. 4195.CrossRefGoogle Scholar
23.Wilk, G.D. and Wallace, R.M., Appl. Phys. Lett. 76 (2000) p. 112.CrossRefGoogle Scholar
24.Lucovsky, G. and Rayner, G.B. Jr, Appl. Phys. Lett. 77 (2000) p. 2912.CrossRefGoogle Scholar
25.Higashi, G.S. and Fleming, C.G., Appl. Phys. Lett. 55 (1989) p. 1963.CrossRefGoogle Scholar
26.Ericsson, P., Bengtsson, S., and Skarp, J., Microelectron. Eng. 36 (1997) p. 91.CrossRefGoogle Scholar
27.Juppo, M., Rahtu, A., Ritala, M., and Leskelä, M., Langmuir 16 (2000) p. 4043.CrossRefGoogle Scholar
28.Hattori, T., Aiba, T., Iijima, E., Okube, Y., Nohira, H., Tate, N., and Katayama, M., Surf. Sci. 104/105 (1996) p. 323.CrossRefGoogle Scholar
29.Ikeda, H., Nakagawa, Y., Toshima, M., Furuta, S., Zaima, S., and Yasuda, Y., Surf. Sci. 117/118 (1997) p. 109.CrossRefGoogle Scholar
30.Ikeda, H., Nakagawa, Y., Zaima, S., Ishibashi, Y., and Yasuda, Y., Jpn. J. Appl. Phys. 38 (1999) p. 3422.CrossRefGoogle Scholar
31.Zhang, X., Chabal, Y.J., and Garfunkel, E., J. Vac. Sci. Technol., A 19 (2001) p. 1725.CrossRefGoogle Scholar
32.Zhang, X., Chabal, Y.J., Garfunkel, E., and Christman, S.B., Appl. Phys. Lett. 79 (2001) p. 4051.CrossRefGoogle Scholar
33.Gusev, E.P., Copel, M., Cartier, E., Baumvol, I.J.R., Krug, C., and Gribelyuk, M.A., Appl. Phys. Lett. 76 (2000) p. 176.CrossRefGoogle Scholar
34.Howie, A., J. Microscopy 17 (1979) p. 11.CrossRefGoogle Scholar
35.Kwo, J., Hong, M., Kortan, A.R., Queeney, K.T., Chabal, Y.J., Mannaerts, J.P., Boone, T., Krajewski, J.J., Sergent, A.M., and Rosamilia, J.M., Appl. Phys. Lett. 77 (2000) p. 130.CrossRefGoogle Scholar
36.Kwo, J., Hong, M., Kortan, A.R., Queeney, K.T., Chabal, Y.J., Opila, R.L., Muller, D.A., Chu, S.N.G., Sapjeta, B.J., Lay, T.S., Mannaerts, J.P., Boone, T., Krautter, H.W., Krajewski, J.J., Sergent, A.M., and Rosamilia, J.M., J. Appl. Phys. 89 (2001) p. 3920.CrossRefGoogle Scholar
37.Busch, B.W., Kwo, J., Hong, M., Mannaerts, J.P., Sapjeta, B.J., Schulte, W.H., Garfunkel, E., and Gustafsson, T., Appl. Phys. Lett. 79 (2001) p. 2447.CrossRefGoogle Scholar
38.Stemmer, S., Maria, J.-P., and Kingon, A.I., Appl. Phys. Lett. 79 (2001) p. 104.Google Scholar