Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:14:02.514Z Has data issue: false hasContentIssue false

Materials Biotechnology and Blood Substitutes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Blood is a dispersion of formed elements in an aqueous colloid. The combined mass of the formed elements of blood measure on average 30 ml per kg body weight, or about the same weight as the liver. The colloidal phase of blood contains numerous organic factors that play important primary and supporting roles in homeostasis, including immune surveillance, coagulation, and nutrient transport.

Erythrocytes (red blood cells) are the principle formed elements and provide the life-sustaining function, in conjunction with the heart, lungs, blood vessels and kidneys, of transporting and protecting the oxygen-carrying pigment, hemoglobin, to the tissues. The oxygen-binding properties of hemoglobin are sensitive to factors such as the cooperative effects of O2 binding, pH and CO2 levels, and the presence of other metabolic intermediates such as 2,3-diphosphoglycerate. The synergistic effects of these factors produce a well-known sigmoidal curve plot of the relationship between oxygen affinity and the partial pressure of oxygen (pO2): there is high oxygen affinity in the lung where the pO2 is high, and a low oxygen affinity in the tissues, where the pO2 is low. Uptake and delivery of oxygen by hemoglobin is associated with considerable spatial rearrangement of the hemoglobin molecule.

Blood is a non-Newtonian suspension. Its viscosity is a function of both the vascular diameter and the concentration of erythrocytes. At a normal hematocrit of 40%, the viscosity of blood ranges between 2 and 4 Pa s as measured in tubes ranging 10–1,500 μm diameter. The osmolality of blood serum is 275–295 mOsm/1.

Type
Biomedical Materials
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Erselev, A.J. and Gabuzda, T.G., Pathophysiology of Blood, 2nd ed. (Saunders, Philadelphia, 1979) p. 1.Google Scholar
2.Perutz, M.F., Nature 228 (1970) p. 726734.CrossRefGoogle Scholar
3.Dornan, R.K., Military Medicine 10 (1990) p. 512513.CrossRefGoogle Scholar
4.Kossovsky, N., Bunshah, R.F., Gelman, A., Sponsler, E., Umarjee, D.M., Suh, T.G., Prakash, S., Doer, H.J., and Deshpandey, C.V., J. Appl. Biomater. 1 (1990) p. 289294.CrossRefGoogle Scholar
5.Kossovsky, N., Gelman, A., Sponsler, E.E., and Millett, D., “Nanocrystalline Epstein-Barr Virus Decoys.” J. Appl. Biomater., in press.Google Scholar
6.Clark, L.C. and Goilan, F., Science 152 (1966) p. 17551758.CrossRefGoogle Scholar
7.Sloviter, H.A. and Kamimoto, T., Nature 216 (1967) p. 458460.CrossRefGoogle Scholar
8.Geyer, R.P., Monroe, R.G., and Taylor, K., in Organ Perfusion and Preservation, edited by Norman, J.C.et al. (Appleton-Century-Crofts, New York, 1986) p. 8596.Google Scholar
9.Geyer, R.P., Biomater. Art. Cell. Art. Org. 16 (1-3) (1988) p. 3149.Google Scholar
10.Waxman, K., Ann. Emerg. Med. 15 (1986) p. 14231424.CrossRefGoogle Scholar
11.Sloviter, H.A., Biomater. Art. Cell. Art. Org. 16 (1-3) (1988) p. 459461.Google Scholar
12.Biro, G.P., Cardiovasc. Res. 16 (1982) p. 194204.CrossRefGoogle Scholar
13.Sloviter, H.A. and Mukherji, B., in Advances in Blood Substitute Research, edited by Bolin, R.B., Geyer, R.P., and Nemo, G.J. (A.R. Liss, New York, 1983) p. 181.Google Scholar
14.Arlen, C., Follana, F., LeBlanc, M., Long, C., Long, D., Reiss, J.F., and Valla, A., Third International Symposia of Blood Substitutes, Montreal, May, 1987, Abstract.Google Scholar
15.Tremper, K.K., Vercillotti, G.M., and Hammerschmidt, D.E., Crit. Care Med. 12 (1984) p. 428431.CrossRefGoogle Scholar
16.Spence, R.K., McCoy, S., Costabile, J., Norcross, E.D., Pello, M.J., Alexander, J.B., Wisdom, C., and Camishion, R.C., Crit. Care Med. 18 (11) (1990) p. 12271230.CrossRefGoogle Scholar
17.Pfannkuch, F. and Schnoy, N., in Advances in Blood Substitute Research, edited by Bolin, R.B., Geyer, R.P., and Nemo, G.J. (A.R. Liss, New York, 1983) p. 209219.Google Scholar
18.Lutz, J., Int. Anesthio. Clin. 23 (1985) p. 6393.CrossRefGoogle Scholar
19.Lutz, J., Metzenauer, P., Kunz, E., and Heine, W.D., in Oxygen-Carrying Colloidal Blood Substitutes, edited by Frey, R., Beisbarth, H., and Stosseck, K. (W. Zuckschwerdt, Munich, 1982) p. 7381.Google Scholar
20.Illrich, V. and Diehl, H., Eur. J. Biochem. 20 (1971) p. 509512.CrossRefGoogle Scholar
21.Lane, T.A. and Krukonis, V., Transfusion 28 (1988) p. 375378.CrossRefGoogle Scholar
22.Lane, T.A. and Lamkin, G.E., Blood 68 (2) (1986) p. 351354.CrossRefGoogle ScholarPubMed
23.Tuliani, W., O'Rear, E.A., Fung, B.M., and Sierra, B.D., J. Biomed. Mater. Res. 22 (1988) p. 4561.CrossRefGoogle Scholar
24.Sloviter, H.A., Fed. Proc. 34 (1975) p. 14841487.Google Scholar
25.Parsons, D.L. and Shih, R.L., Arch. Int. Pharmacodyn. 297 (1989) p. 294304.Google Scholar
26.Li, N.N. and Asher, W.J., in Chemical Engineering in Medicine, edited by Gould, R.F. (Amer. Chem. Soc. Adv. Chem. Ser. 118, Washington, DC, 1973) p. 114.CrossRefGoogle Scholar
27.Mori, Y.H., Kaminaga, K., and Ando, T., in Ann. Biomed. Eng. 18 (1990) p. 285298.CrossRefGoogle Scholar
28.Schmidt, A., Theil II, Pflug Arch. Ces. Physiol. 11 (1875) p. 515.CrossRefGoogle Scholar
29.Chang, T.M.S., Science 146 (1964) p. 524.CrossRefGoogle Scholar
30.Mok, W., Chen, D.E., and Mazur, A., Fed. Proc. 34 (1975) p. 14581460.Google Scholar
31.Bunn, H.F., Jandl, J.H., J. Exp. Med. 129 (1969) p. 909924.CrossRefGoogle Scholar
32.Sehgal, L.R., Gould, S.A., Rosen, A.L., Sehgal, H.L., and Moss, G.S., Surgery 95 (1984) p. 433438.Google Scholar
33.Keipert, P.E. and Chang, T.M.S., Biomater. Med. Dev. Art. Org. 13 (1985) p. 115.Google Scholar
34.Tam, S.C., Blumenstein, J., and Wong, J.T., Proc. Natl. Acad. Sci. 73 (USA, 1976) p. 2128.Google Scholar
35.Iwasaki, K. and Iwashita, K., Art. Org. 10 (1986) p. 411416.CrossRefGoogle Scholar
36.Keipert, P.E. and Chang, T.M.S., Vox Sang. 53 (1987) p. 714.Google Scholar
37.Birndorf, L., J. Appl. Physiol. 29 (1970) p. 537538.CrossRefGoogle Scholar
38.Moss, G.S., DeWoskin, R., and Cochin, A., Surgery 74 (1973) p. 198203.Google Scholar
39.Feola, M., Gonzalez, H., Canizaro, P.C., and Bingham, D., Surgery Gynecology and Obstetrics 157 (1983) p. 399408.Google Scholar
40.Bucci, E., Fronticelli, C., Orth, C., Martorana, A.C., Aecischer, L., and Angeloni, P., Biomater. Art. Cell. Art. Org. 16 (1-3) (1988) p. 197204.Google Scholar
41.Vlahakes, G.J., Lee, R., Jacobs, E.E., LaRaia, P.J., and Austen, W.G., J. Thorac. Cardiovasc. Surg. 100 (1990) p. 379388.CrossRefGoogle Scholar
42.Feola, M., Simoni, J., and Tran, R., Biomater. Art. Cell. Art. Org. 16 (1-3) (1988) p. 217226.Google Scholar
43.Chang, T.M.S. and Varma, R., Biomater. Art. Cell. Art. Org. 16 (1-3) (1988) p. 205215.Google Scholar
44.Chang, T.M.S., Biomater. Art. Cell. Art. Org. 16 (1-3) (1988) p. 19; reprinted article of T.M.S. Chang. Attempts to find a method to prepare artificial hemoglobin corpuscles. Report of a reseach project, McGill University, 1957.Google Scholar
45.Chang, T.M.S., Fed. Proc. 28 p. 461, abstract.Google Scholar
46.Hunt, C.A. and Burnette, R.R., in Advances in Blood Substitute Research, edited by Bolin, R.B., Geyer, R.P., and Nemo, G.J. (A.R. Liss, New York, 1983).Google Scholar
47.Gaber, B.P., Yager, P., Sheridan, J.P., and Chang, E.L., FEBS Letters 153 (1983) p. 285.CrossRefGoogle Scholar
48.Farmer, M.C., Johnson, S.A., Beissinger, R.L., Gossage, J.L., Lynn, A.B., and Carter, K.A., Trans. Am. Soc. Intern. Org. 32 (1986) p. 5863.Google Scholar
49.Beissinger, R.L., Farmer, M.C., Gossage, J.L., Trans. Am. Soc. Artif. Intern. Ȯrg. 36 (1986) p. 5863.Google Scholar
50.Gaber, B.P. and Farmer, M.C., in The Red Cell: Sixth Annual Arbor Conference, edited by Brewer, G.J. (A.R. Liss, New York, 1984) p. 179190.Google Scholar
51.Farmer, M.C. and Gaber, B.P., Methods Enzymol. 149 (1987) p. 184200.CrossRefGoogle Scholar
52.Farmer, M.C., Rudolph, A.S., Vandergriff, K.D., Hayre, M.D., Bayne, S.A., and Johnson, S.A., Biomater. Art. Cell. Art. Org. 16(1-3) (1988) p. 289299.Google Scholar
53.Rabinovici, R., Rudolph, A.S., and Feuerstein, G., Circulatory Shock 29 (1989) p. 115132.Google Scholar
54.Allen, T.M., Hansen, C., and Rutledge, J., Biochimica el Biophysica Acta 981 (1989) p. 2735.CrossRefGoogle Scholar