Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T13:31:38.772Z Has data issue: false hasContentIssue false

Making Lipid Membranes Rough, Tough, and Ready to Hit the Road

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Solid-supported lipid bilayers hold strong promise as bioanalytical sensor platforms because they readily mimic the same multivalent ligand-receptor interactions that occur in real cells. Such devices might be used to monitor air and water quality under real-world conditions. At present, however, supported membranes are considered too fragile to survive the harsh environments typically required for non-laboratory use. Specifically, they lack the resiliency to withstand air exposure and the thermal and mechanical stresses associated with device transport, storage, and continuous use over long periods of time. Several successful strategies are now emerging to make supported membranes tougher. These strategies incorporate mimics of the cytoskeleton and glycocalyx of real cell membranes. The promise of these more robust lipid bilayer architectures indicates that future materials should be designed to more fully resemble the actual structure of cell membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Knobler, S.L., Mahoud, A.A.F., and Pray, L.A., Eds., Biological Threats and Terrorism: Assessing the Science and Response Capabilities: Workshop Summary (National Academy Press, Washington, DC, 2002).Google Scholar
2Arecent review of the state of preparedness for influenza was discussed in a special issue of Science 312 (2006) p.379. See also an editorial in the same issue that discusses the spread of avian flu and its transfer to humans, with 50% lethality of infected humans.Google Scholar
3Please see Biological Threats and Terrorism: Assessing the Science and Response Capabilities: Workshop Summary (2002) p. 71, published by the National Academies Press and available online at www.nap.edu/openbook/0309082536/html/71.html; and K. Lowe, G.S. Pearson, and V. Utgoff, “Potential values of a simple biological warfare protective mask,” in Biological Weapons: The Limiting Threat, edited by J. Lederberg (MIT Press, Cambridge, MA, 1999) p. 263.Google Scholar
4For example, see Pearson, H., “Dying cell tolls warning bell. Collapsing membrane makes ‘canary on a chip,’” in [email protected], June 16, 2003, doi:10.1038/news030609-19 (accessed May 2006).CrossRefGoogle Scholar
5McConnell, H.M., Watts, T.H., Weis, R.M., and Brian, A.A., Biochim. Biophys. Acta 864 (1986) p. 95.CrossRefGoogle Scholar
6Sackmann, E., Science 271 (1996) p. 43.CrossRefGoogle Scholar
7Groves, J.T. and Boxer, S.G., Acc. Chem. Res. 35 (2002) p. 149.CrossRefGoogle Scholar
8Cremer, P.S. and Yang, T.L., J. Am. Chem. Soc. 121 (1999) p. 8130.CrossRefGoogle Scholar
9Pisarchick, M.L., Gesty, D., and Thompson, N.L., Biophys. J. 63 (1992) p. 215.CrossRefGoogle Scholar
10Groves, J.T. and Boxer, S.G., Biophys. J. 69 (1995) p. 1972.CrossRefGoogle Scholar
11Groves, J.T., Wuelfing, C., and Boxer, S.G., Biophys. J. 71 (1996) p. 2716.CrossRefGoogle Scholar
12Cremer, P.S., Groves, J.T., Kung, L.A., and Boxer, S.G., Langmuir 15 (1999) p. 3893.CrossRefGoogle Scholar
13Leito, A.M., Cush, R.C., and Thompson, N.L., Biophys. J. 85 (2003) p. 3294.CrossRefGoogle Scholar
14Kiessling, L.L. and Pohl, N.L., Chem. Biol. 3 (1996) p. 71.CrossRefGoogle Scholar
15Mammen, M., Choi, S.-K., and Whitesides, G.M., Angew. Chem. Int. Ed. 37 (1998) p. 2754.3.0.CO;2-3>CrossRefGoogle Scholar
16Groves, J.T., Ulman, N., and Boxer, S.G., Science 275 (1997) p. 651.CrossRefGoogle Scholar
17Groves, J.T., Mahal, L.K., and Bertozzi, C.R., Langmuir 17 (2001) p. 5129.CrossRefGoogle Scholar
18Groves, J.T., Ulman, N., Cremer, P.S., and Boxer, S.G., Langmuir 14 (1998) p. 3347.CrossRefGoogle Scholar
19Mouradian, R., Womersley, C., Crowe, L.M., and Crowe, J.H., Biochim. Biophys. Acta 778 (1984) p. 615.CrossRefGoogle Scholar
20Crowe, J.H., Crowe, L.M., and Chapman, D., Science 223 (1984) p. 701.CrossRefGoogle Scholar
21Yang, T., Baryshnikova, O.K., Mao, H., Holden, M.A., and Cremer, P.S., J. Am. Chem. Soc. 125 (2003) p. 4779.CrossRefGoogle Scholar
22Yang, T., Simanek, E.E., and Cremer, P.S., Anal. Chem. 72 (2000) p. 2587.CrossRefGoogle Scholar
23Yang, T.L., Jung, S.Y., Mao, H.B., and Cremer, P.S., Anal. Chem. 73 (2001) p. 165.CrossRefGoogle Scholar
24Cremer, P.S. and Boxer, S.G., J. Phys. Chem. B 103 (1999) p. 2554.CrossRefGoogle Scholar
25Morigaki, K., Kiyosue, K., and Taguchi, T., Langmuir 20 (2004) p. 7729.CrossRefGoogle Scholar
26Ross, E., Bondurant, B., Spratt, T., Conboy, J.C., O'Brien, D.F., and Saavedra, S.S., Langmuir 17 (2001) p. 2305.CrossRefGoogle Scholar
27Conboy, J.C., Liu, S., O'Brien, D.F., and Saavedra, S.S., Biomacromolecules 4 (2003) p. 841.CrossRefGoogle Scholar
28Morigaki, K., Schonherr, H., Frank, C.W., and Knoll, W., Langmuir 19 (2003) p. 6994.CrossRefGoogle Scholar
29Morigaki, K., Baumgart, T., Jonas, U., Offenhäusser, A., and Knoll, W., Langmuir 18 (2002) p. 4082.CrossRefGoogle Scholar
30Petralli-Mallow, T., Brigmann, K.A., Richter, L.J., Stephenson, J.C., and Plant, A.L., Proc. SPIE 3858 (1999) p. 25.CrossRefGoogle Scholar
31Phillips, S.K., Dong, Y., Carter, D., and Cheng, Q., Anal. Chem. 77 (2005) p. 2960.CrossRefGoogle Scholar
32Plant, A.L., Langmuir 15 (1999) p. 5128.CrossRefGoogle Scholar
33Munro, J.C. and Frank, C.W., Langmuir 20 (2004) p. 3339.CrossRefGoogle Scholar
34Munro, J.C. and Frank, C.W., Langmuir 20 (2004) p. 10567.CrossRefGoogle Scholar
35Halter, M., Nogata, Y., Dannenberger, O., Sasaki, T., and Vogel, V., Langmuir 20 (2004) p. 2416.CrossRefGoogle Scholar
36Kim, K., Shin, K., Kim, H., Kim, C., and Byun, Y., Langmuir 20 (2004) p. 5396.CrossRefGoogle Scholar
37Ross, E., Rozanski, L., Spratt, T., Liu, S., O'Brien, D.F., and Saavedra, S.S., Langmuir 19 (2003) p. 1752.CrossRefGoogle Scholar
38Holden, M.A., Jung, S.-Y., Yang, T., Castellana, E.T., and Cremer, P.S., J. Am. Chem. Soc. 126 (2004) p. 6512.CrossRefGoogle Scholar
39Albertorio, F., Diaz, A.J., Yang, T., Chapa, V.A., Kataoka, S., Castellana, E.T., and Cremer, P.S., Langmuir 21 (2005) p. 7476.CrossRefGoogle Scholar
40Sackmann, E., FEBS Lett. 346 (1994) p. 3.CrossRefGoogle Scholar
41Evans, E. and Rawicz, W., Phys. Rev. Lett. 79 (1997) p. 2379.CrossRefGoogle Scholar
42Hooper, N.M., Curr. Biol. 8 (1998) p. R114.CrossRefGoogle Scholar
43Evans, S.V. and MacKenzie, C.R., J. Mol. Rec. 12 (1999) p. 155.3.0.CO;2-S>CrossRefGoogle Scholar
44Albersdorfer, A., Feder, A.T., and Sackmann, E., Biophys. J. 73 (1997) p. 245.CrossRefGoogle Scholar
45Gennes, P.G. De, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).Google Scholar
46Gennes, P.G. De, Macromolecules 13 (1980) p. 1069.CrossRefGoogle Scholar
47Gennes, P.G. De, Adv. Colloid Interface Sci. 27 (1987) p. 189.CrossRefGoogle Scholar
48Needham, D., McIntosh, T.J., and Lasic, D., Biochim. Biophys. Acta 1108 (1992) p. 40.CrossRefGoogle Scholar
49Marsh, D., Bartucci, R., and Sportelli, L., Biochim. Biophys. Acta 1615 (2003) p. 33.CrossRefGoogle Scholar
50Tirosh, O., Barenholz, Y., Katzhendler, J., and Priev, A., Biophys. J. 74 (1998) p. 1371.CrossRefGoogle Scholar
51Bivas, I., Winterhalter, M., Meleard, P., and Bothorel, P., Europhys. Lett. 41 (1998) p. 261.CrossRefGoogle Scholar
52Hansen, P.L., Cohen, J.A., Podgomik, R., and Parsegian, A.V., Biophys. J. 84 (2003) p. 350.CrossRefGoogle Scholar
53Marsh, D., Biochim. Biophys. Acta 1286 (1996) p. 183.CrossRefGoogle Scholar
54Marsh, D., Biophys. J. 81 (2001) p. 2154.CrossRefGoogle Scholar
55Harder, P., Grunze, M., Whitesides, G.M., Laibinis, P.E., and Dahint, R., J. Phys. Chem. B 102 (1998) p. 426.CrossRefGoogle Scholar
56Schwendel, D., Dahint, R., Herrwerth, S., Schloerholz, M., Eck, W., and Grunze, M., Langmuir 17 (2001) p. 5717.CrossRefGoogle Scholar
57Prime, K.L. and Whitesides, G.M., J. Am. Chem. Soc. 115 (1993) p. 10714.CrossRefGoogle Scholar
58Wagner, M.L. and Tamm, L.K., Biophys. J. 79 (2000) p. 1400.CrossRefGoogle Scholar
59Tanaka, M. and Sackmann, E., Nature 437 (2005) p. 656.CrossRefGoogle Scholar