Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T13:43:37.948Z Has data issue: false hasContentIssue false

Magnetocaloric materials for refrigeration near room temperature

Published online by Cambridge University Press:  11 April 2018

Anja Waske
Affiliation:
Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Germany; [email protected]
Markus E. Gruner
Affiliation:
Department of Physics, Universität Duisburg-Essen, Germany; [email protected]
Tino Gottschall
Affiliation:
High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, Germany; [email protected]
Oliver Gutfleisch
Affiliation:
Technische Universität Darmstadt, and Fraunhofer IWKS Materials Recycling and Resource Strategies Hanau, Germany; [email protected]
Get access

Abstract

This article overviews the current status of magnetocaloric materials for room-temperature refrigeration. We discuss the underlying mechanism of the magnetocaloric effect and illustrate differences between first- and second-order type materials starting with gadolinium as a reference system. Beyond the key functional properties of magnetocaloric materials, the adiabatic temperature, and entropy change, we briefly address the criticality of the most promising materials in terms of their supply risk. Looking at practical applications, suitable geometries and processing routes for magnetocaloric heat exchangers for device implementation are introduced.

Type
Caloric Effects in Ferroic Materials
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weiss, P., Piccard, A., J. Phys. 7, 103 (1917).Google Scholar
Brown, G.V., J. Appl. Phys. 47, 3673 (1976).CrossRefGoogle Scholar
Belusa, V., “Prototype of Magnetocaloric Wine Cooler” (2015), http://www.chemistryviews.org/details/news/7261611/Prototype_of_Magnetocaloric_Wine_Cooler.html (accessed November 24, 2017).Google Scholar
Cooltech Applications, “Magnetic Refrigeration: Cooltech Applications Is Partnering with Carrefour” (YouTube video, posted September 28, 2016), https://www.youtube.com/watch?v=qCEmir9zW2g (accessed November 24, 2017).Google Scholar
Cooltech Applications, “World Premiere of Revolutionary Medical Refrigerator–Magnetic Refrigeration” (YouTube video, posted December 14, 2015), https://www.youtube.com/watch?v=eW7mnal9CWE (accessed November 24, 2017).Google Scholar
Pecharsky, V.K., Gschneidner, K.A. Jr., Phys. Rev. Lett. 78, 4494 (1997).CrossRefGoogle Scholar
Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Appl. Phys. Lett. 78, 3675 (2001).CrossRefGoogle Scholar
Tegus, O., Brück, E., Buschow, K.H.J., de Boer, F.R., Nature 415, 150 (2002).CrossRefGoogle Scholar
Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A., Nat. Mater. 4, 450 (2005).CrossRefGoogle Scholar
Tishin, A.M., Spichkin, Y.I., The Magnetocaloric Effect and Its Applications (Institute of Physics, Beograd, Serbia, 2003).CrossRefGoogle Scholar
Fujita, A., Fukamichi, K., Wang, J.T., Kawazoe, Y., Phys. Rev. B 68, 104431 (2003).CrossRefGoogle Scholar
Lovell, E., Ghivelder, L., Nicotina, A., Turcaud, J., Bratko, M., Caplin, A.D., Basso, V., Barcza, A., Katter, M., Cohen, L.F., Phys. Rev. B 94, 134405 (2016).CrossRefGoogle Scholar
Gschneidner, K.A. Jr., Pecharsky, V.K., Tsokol, A.O., Rep. Prog. Phys. 68, 1479 (2006).CrossRefGoogle Scholar
Buchelnikov, V.D., Entel, P., Taskaev, S.V., Phys. Rev. B 78, 184427 (2008).CrossRefGoogle Scholar
Fultz, B., Prog. Mater. Sci. 55, 247 (2010).CrossRefGoogle Scholar
Stonaha, P.J., Manley, M.E., Bruno, N.M., Karaman, I., Arroyave, R., Singh, N., Abernathy, D.L., Chi, S., Phys. Rev. B 92, 140406(R) (2015).CrossRefGoogle Scholar
Gruner, M.E., Keune, W., Roldán Cuenya, B., Weis, C., Landers, J., Makarov, S.I., Klar, D., Hu, M.Y., Alp, E.E., Zhao, J., Krautz, M., Gutfleisch, O., Wende, H., Phys. Rev. Lett. 114, 057202 (2015).CrossRefGoogle Scholar
Wolloch, M., Gruner, M.E., Keune, W., Mohn, P., Redinger, J., Hofer, F., Suess, D., Podloucky, R., Landers, J., Salamon, S., Scheibel, F., Spoddig, D., Witte, R., Roldan Cuenya, B., Gutfleisch, O., Hu, M.Y., Zhao, J., Toellner, T., Alp, E.E., Siewert, M., Entel, P., Pentcheva, R., Wende, H., Phys. Rev. B 94, 174435 (2016).CrossRefGoogle Scholar
Gottschall, T., Skokov, K.P., Benke, D., Gruner, M.E., Gutfleisch, O., Phys. Rev. B 93, 184431 (2016).CrossRefGoogle Scholar
Fujita, A., Fujieda, S., Fukamichi, K., Mitamura, H., Goto, T., Phys. Rev. B 65, 014410 (2001).CrossRefGoogle Scholar
Dung, N.H., Ou, Z.Q., Caron, L., Zhang, L., Cam Thanh, D.T., de Wijs, G.A., de Groot, R.A., Buschow, K.H.J., Brück, E., Adv. Energy Mater. 1, 1215 (2011).CrossRefGoogle Scholar
Dan’kov, S.Y., Tishin, A.M., Pecharsky, V.K., Gschneidner, K.A. Jr., Phys. Rev. B 57, 3478 (1998).CrossRefGoogle Scholar
Waske, A., Hermann, H., Mattern, N., Skokov, K., Gutfleisch, O., Eckert, J., J. Appl. Phys. 112, 123918 (2012).CrossRefGoogle Scholar
Smith, A., Bahl, C.R.H., Bjørk, R., Engelbrecht, K., Nielsen, K.K., Pryds, N., Adv. Energy Mater. 2, 1288 (2012).CrossRefGoogle Scholar
Skokov, K.P., Khovaylo, V.V., Müller, K.H., Moore, J.D., Liu, J., Gutfleisch, O., J. Appl. Phys. 111, 07A910 (2012).CrossRefGoogle Scholar
Waske, A., Giebeler, L., Weise, B., Funk, A., Hinterstein, M., Herklotz, M., Skokov, K., Fähler, S., Gutfleisch, O., Eckert, J., Phys. Status Solidi Rapid Res. Lett. 9, 136 (2015).CrossRefGoogle Scholar
Radulov, I.A., Karpenkov, D.Y., Skokov, K.P., Karpenkov, A.Y., Braun, T., Brabänder, V., Gottschall, T., Pabst, M., Stoll, B., Gutfleisch, O., Acta Mater. 127, 389 (2017).CrossRefGoogle Scholar
Gottschall, T., Stern-Taulats, E., Mañosa, L., Planes, A., Skokov, K.P., Gutfleisch, O., Appl. Phys. Lett. 110, 223904 (2017).CrossRefGoogle Scholar
Trung, N.N., Klaasse, J.C.P., Tegus, O., Cam Thanh, D.T., Buschow, K.H.J., Brück, E., J. Phys. D Appl. Phys. 43, 015002 (2010).CrossRefGoogle Scholar
Fries, M., Pfeuffer, L., Bruder, E., Gottschall, T., Ener, S., Diop, L.V.B., Gröb, T., Skokov, K.P., Gutfleisch, O., Acta Mater. 132, 222 (2017).CrossRefGoogle Scholar
Reif, F., Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1985).Google Scholar
Gutfleisch, O., Gottschall, T., Fries, M., Benke, D., Radulov, I., Skokov, K.P., Wende, H., Gruner, M., Acet, M., Entel, P., Farle, M., Philos. Trans. R. Soc. A (2016).Google Scholar
Cohen, L., Phys. Status Solidi B 255, 1700317 (2017).CrossRefGoogle Scholar
Brück, E., Trung, N.T., Ou, Z.Q., Buschow, K.H.J., Scr. Mater. 67, 590 (2012).CrossRefGoogle Scholar
Basso, V., Kuepferling, M., Curcio, C., Bennati, C., Barzca, A., Katter, M., Bratko, M., Lovell, E., Turcaud, J., Cohen, L.F., J. Appl. Phys. 118, 053907 (2015).CrossRefGoogle Scholar
Graedel, T.E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N.T., Schechner, D., Warren, S., Yang, M., Zhu, C., Environ. Sci. Technol. 46 (2), 1063 (2012).CrossRefGoogle Scholar
Achzet, B., Reller, A., Zepf, V., Rennie, C., Ashfield, M., Simmons, J., Materials Critical to the Energy Industry: An Introduction (University of Augsburg, Augsburg, Germany, 2011).Google Scholar
Gauss, R., Homm, G., Gutfleisch, O., J. Ind. Ecol. 21 (5), 1291 (2016).CrossRefGoogle Scholar
Bureau de Recherches Géologiques et Minières, British Geological Survey, TNO, Deloitte Sustainability, “Study on the Review of the List of Critical Raw Materials” (Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs of the European Commission, Critical Raw Materials Factsheet catalogue number ET-04-15-307-EN-N, June 2017).Google Scholar
Barclay, J.A., Steyert, W., “Active Magnetic Regenerator,” US Patent 4,332,135 (1981).Google Scholar
Kitanovski, A., Tušek, J., Tomc, U., Plaznik, U., Ožbolt, M., Poredoš, A., Magnetocaloric Energy Conversion, Green Energy and Technology Series (Springer, Cham, Switzerland, 2015).CrossRefGoogle Scholar
Balli, M., Jandl, S., Fournier, P., Kedous-Lebouc, A., Appl. Phys. Rev. 4, 021305 (2017).CrossRefGoogle Scholar
Lyubina, J., J. Phys. D Appl. Phys. 50, 053002 (2017).CrossRefGoogle Scholar
Lei, T., Engelbrecht, K., Nielsen, K.K., Veje, C.T., Appl. Therm. Eng. 111, 1232 (2017).CrossRefGoogle Scholar
Moore, J.D., Klemm, D., Lindackers, D., Grasemann, S., Träger, R., Eckert, J., Löber, L., Scudino, S., Katter, M., Barcza, A., Skokov, K.P., Gutfleisch, O., J. Appl. Phys. 114, 043907 (2013).Google Scholar
Wieland, S., Petzoldt, F., J. Alloys Compd. 719, 182 (2017).CrossRefGoogle Scholar
Mayer, C., Dubrez, A., Pierronnet, M., Vikner, P., Phys. Status Solidi C 11, 1059 (2014).CrossRefGoogle Scholar
Barcza, A., Vieyra, H.A., Katter, M., “Industrial Development of La-Fe-Si-Based-Magnetocaloric Alloys,” presented at Danish Days on Caloric Materials and Devices, Risø, Denmark, October 2–3, 2017.Google Scholar
Saito, A.T., Kobayashi, T., Tsuji, H., J. Magn. Magn. Mater. 310, 2808 (2007).CrossRefGoogle Scholar
Liu, J., Zhang, P., Dai, F., Yan, A., Scr. Mater. 69, 485 (2013).CrossRefGoogle Scholar
Funk, A., Zeilinger, M., Dötz, F., Soldatov, I., Schäfer, R., Waske, A., Phys. Status Solidi B 255 (2), 1700345 (2018).CrossRefGoogle Scholar
Pulko, B., Tušek, J., Moore, J.D., Weise, B., Skokov, K., Mityashkin, O., Kitanovski, A., Favero, C., Fajfar, P., Gutfleisch, O., Waske, A., Poredoš, A., J. Magn. Magn. Mater. 375, 65 (2015).CrossRefGoogle Scholar
Krautz, M., Funk, A., Skokov, K.P., Gottschall, T., Eckert, J., Gutfleisch, O., Waske, A., Scr. Mater. 95, 50 (2015).CrossRefGoogle Scholar