Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:15:31.380Z Has data issue: false hasContentIssue false

Local water diffusivity as a molecular probe of surface hydrophilicity

Published online by Cambridge University Press:  12 December 2014

Jinsuk Song
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA; [email protected]
Brendan Allison
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA; [email protected]
Songi Han
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA; [email protected]
Get access

Abstract

The study of water’s functional role on hydrophilic surfaces of biological and soft materials benefits from experimental measurements that operate at finer length and time scales than contact-angle-measurement-derived surface wettability. We show that local translational diffusivity permits the empirical determination of local hydrophilicity by means of Overhauser dynamic nuclear polarization (ODNP) amplified 1H NMR relaxometry. Large unilamellar vesicles (LUVs) in dilute bulk water solution serve as good model hydrophilic surfaces, and their surface water diffusion was shown to be partially or entirely decoupled from the bulk water viscosity, with the extent of decoupling dependent on the surface activity of the particular viscogen chosen. The effective hydrophilicity of a hydrated LUV surface in solution was further shown to be tunable by specific ions or osmolytes dissolved in solution, and the chemical makeup of a surface can give rise to a heterogeneous hydration dynamics landscape, as demonstrated on protein surfaces. ODNP-derived surface water diffusivity is suggested to be a unique tool for the site-specific mapping of the interaction landscape of a wide range of functional materials operating in aqueous solution, from wet adhesives to fuel cell membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagchi, B., Chem. Rev. 105, 3197 (2005).CrossRefGoogle Scholar
Qvist, J., Persson, E., Mattea, C., Halle, B., Faraday Discuss. 141, 131 (2009).CrossRefGoogle Scholar
Dey, A., Jenney, F.E. Jr., Adams, M.W.W., Babini, E., Takahashi, Y., Fukuyama, K., Hodgson, K.O., Hedman, B., Solomon, E.I., Science 318, 1464 (2007).Google Scholar
Brovchenko, I., Oleinikova, A., ChemPhysChem 9, 2695 (2008).CrossRefGoogle Scholar
Fernández, A., Scheraga, H.A., Proc. Natl. Acad. Sci. U.S.A. 100, 113 (2003).Google Scholar
Heyden, M., Tobias, D.J., Phys. Rev. Lett. 111, 218101 (2013).Google Scholar
Russo, D., Teixeira, J., Kneller, L., Copley, J.R.D., Ollivier, J., Perticaroli, S., Pellegrini, E., Gonzalez, M.A., J. Am. Chem. Soc. 133, 4882 (2011).Google Scholar
Yuan, Y., Lee, T.R., in Surface Science Techniques, Bracco, G., Holst, B., Eds., Springer Series in Surface Sciences (Springer, Berlin, 2013), vol. 51, pp. 334.Google Scholar
Marques, B.S., Nucci, N.V., Wand, A.J., Biophys. J. 104, 180A (2013).Google Scholar
Nucci, N.V., Pometun, M.S., Wand, A.J., Nat. Struct. Mol. Biol. 18, 245 (2011).CrossRefGoogle Scholar
DeFelipe, J., Cereb. Cortex 3, 273 (1993).CrossRefGoogle Scholar
Vijayendran, R.A., Leckband, D.E., Anal. Chem. 73, 471 (2001).CrossRefGoogle Scholar
Johnson, R.D., Arnold, F.H., Biochim. Biophys. Acta 1247, 293 (1995).Google Scholar
Knapp, E.W., Muegge, I., J. Phys. Chem. 97, 11339 (1993).Google Scholar
Huetz, P., Ball, V., Voegel, J.-C., Schaaf, P., Langmuir 11, 3145 (1995).Google Scholar
Mauritz, K.A., Moore, R.B., Chem. Rev. 104, 4535 (2004).Google Scholar
Zhong, D., Pal, S.K., Zewail, A.H., Chem. Phys. Lett. 503, 1 (2011).Google Scholar
Helmy, R., Fadeev, A.Y., Abstr. Pap. Am. Chem. Soc. 229, U708 (2005).Google Scholar
Wang, J.H., Robinson, C.V., Edelman, I.S., J. Am. Chem. Soc. 75, 466 (1953).Google Scholar
Armstrong, B.D., Han, S., J. Chem. Phys. 127, 104508 (2007).Google Scholar
Armstrong, B.D., Choi, J., Lopez, C., Wesener, D.A., Hubbell, W., Cavagnero, S., Han, S., J. Am. Chem. Soc. 133, 5987 (2011).Google Scholar
Franck, J.M., Pavlova, A., Scott, J.A., Han, S., Prog. Nucl. Magn. Reson. Spectrosc. 74, 33 (2013).CrossRefGoogle Scholar
Overhauser, A.W., Phys. Rev. 92, 411 (1953).CrossRefGoogle Scholar
Abragam, A., Principles of Nuclear Magnetism (Oxford University Press, Oxford, UK, 1961).Google Scholar
Solomon, I., Phys. Rev. 99, 559 (1955).Google Scholar
Hausser, K.H., Stehlik, D., Adv. Magn. Reson. 127, 79 (1968).Google Scholar
Turke, M.-T., Tkach, I., Reese, M., Hofer, P., Bennati, M., Phys. Chem. Chem. Phys. 12, 5893 (2010).Google Scholar
Hodges, M.W., Cafiso, D.S., Polnaszek, C.F., Lester, C.C., Bryant, R.G., Biophys. J. 73, 2575 (1997).Google Scholar
Freed, J.H., J. Chem. Phys. 68, 4034 (1978).Google Scholar
Bates, R.D. Jr., Drozdoski, W.S., J. Chem. Phys. 67, 4038 (1977).Google Scholar
Cheng, C.-Y., Varkey, J., Ambroso, M.R., Langen, R., Han, S., Proc. Natl. Acad. Sci. U.S.A. 110, 16838 (2013).CrossRefGoogle Scholar
Cheng, C.-Y., Han, S., Annu. Rev. Phys. Chem. 64, 507 (2013).CrossRefGoogle Scholar
Song, J., Franck, J., Pincus, P., Kim, M.W., Han, S., J. Am. Chem. Soc. 136, 2642 (2014).Google Scholar
Franck, J.M., Scott, J.A., Han, S., J. Am. Chem. Soc. 135, 4175 (2013).Google Scholar
Kausik, R., Han, S., J. Am. Chem. Soc. 131, 18254 (2009).Google Scholar
Hussain, S., Franck, J.M., Han, S., Angew. Chem. Int. Ed. 52, 1953 (2013).Google Scholar
Lee, S.H., Rossky, P.J., J. Chem. Phys. 100, 3334 (1994).Google Scholar
Ortony, J.H., Cheng, C.-Y., Franck, J.M., Kausik, R., Pavlova, A., Hunt, J., Han, S., New J. Phys. 13, 015006 (2011).Google Scholar
Wraight, C.A., Biochim. Biophys. Acta 1757, 886 (2006).CrossRefGoogle Scholar
Dabkowska, A.P., Foglia, F., Lawrence, M.J., Lorenz, C.D., McLain, S.E., J. Chem. Phys. 135, 225105 (2011).Google Scholar
Wang, J., Kalinichev, A.G., Kirkpatrick, R.J., J. Phys. Chem. C 113, 11077 (2009).Google Scholar
Svergun, D.I., Richard, S., Koch, M.H.J., Sayers, Z., Kuprin, S., Zaccai, G., Proc. Natl. Acad. Sci. U.S.A. 95, 2267 (1998).Google Scholar
Merzel, F., Smith, J.C., Proc. Natl. Acad. Sci. U.S.A. 99, 5378 (2002).Google Scholar
Smith, J.C., Merzel, F., Verma, C.S., Fischer, S., J. Mol. Liq. 101, 27 (2002).Google Scholar
Levitt, M., Sharon, R., Proc. Natl. Acad. Sci. U.S.A. 85, 7557 (1988).CrossRefGoogle Scholar
Chakraborty, S., Sinha, S.K., Bandyopadhyay, S., J. Phys. Chem. B 111, 13626 (2007).Google Scholar
Xu, H., Berne, B.J., J. Phys. Chem. B 105, 11929 (2001).Google Scholar
Marchi, M., Sterpone, F., Ceccarelli, M., J. Am. Chem. Soc. 124, 6787 (2002).Google Scholar
Yokomizo, T., Yagihara, S., Higo, J., Chem. Phys. Lett. 374, 453 (2003).Google Scholar
Makarov, V.A., Andrews, B.K., Smith, P.E., Pettitt, B.M., Biophys. J. 79, 2966 (2000).Google Scholar
Makarov, V., Pettitt, B.M., Acc. Chem. Res. 35, 376 (2002).CrossRefGoogle Scholar
Smith, B.J., Rawal, A., Funkhouser, G.P., Roberts, L.R., Gupta, V., Israelachvili, J.N., Chmelk, B.F., Proc. Natl. Acad. Sci. U.S.A. 108, 8949 (2011).Google Scholar
Schneck, E., Deme, B., Gege, C., Tanaka, M., Biophys. J. 100, 2151 (2011).Google Scholar
Israelachvili, J.N., Intermolecular and Surface Forces, 2nd ed. (Academic Press, San Diego, CA, 1991).Google Scholar
Bakker, H.J., Nature 491, 533 (2012).Google Scholar
Davis, J.G., Gierszal, K.P., Wang, P., Ben-Amotz, D., Nature 491, 582 (2012).Google Scholar
Wilson, K.R., Schaller, R.D., Co, D.T., Saykally, R.J., Rude, B.S., Catalano, T., Bozek, J.D., J. Chem. Phys. 117, 7738 (2002).Google Scholar
Steitz, R., Gutberlet, T., Hauss, T., Klosgen, B., Krastev, R., Schemmel, S., Simonsen, A.C., Findenegg, G.H., Langmuir 19, 2409 (2003).Google Scholar
Jensen, T.R., Jensen, M.Ø., Reitzel, N., Balashev, K., Peters, G.H., Kjaer, K., Bjørnholm, T., Phys. Rev. Lett. 90, 086101 (2003).Google Scholar
Chalikian, T.V., J. Phys. Chem. B 105, 12566 (2001).Google Scholar
Titantah, J.T., Karttunen, M., J. Am. Chem. Soc. 134, 9362 (2012).CrossRefGoogle Scholar
Rezus, Y.L.A., Bakker, H.J., Phys. Rev. Lett. 99, 148301 (2007).Google Scholar
Tarasevich, Y.I., Colloid J. 73, 257 (2011).Google Scholar
Chandler, D., Nature 437, 640 (2005).Google Scholar
Patel, A.J., Sarkaria, J.N., Kaufmann, S.H., Proc. Natl. Acad. Sci. U.S.A. 108, 17678 (2011).Google Scholar
Giovambattista, N., Debenedetti, P.G., Rossky, P.J., J. Phys. Chem. C 111, 1323 (2007).Google Scholar
Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Proc. Natl. Acad. Sci. U.S.A. 106, 15181 (2009).Google Scholar
Hofmeister, F., Arch. Exp. Pathol. Pharmakol. 24, 247 (1888).Google Scholar
Kunz, W., Specific Ion Effects (World Scientific, Singapore, 2010).Google Scholar
Zhang, Y., Furyk, S., Bergbreiter, D.E., Cremer, P.S., J. Am. Chem. Soc. 127, 14505 (2005).Google Scholar
Stone, K.M., Voska, J., Kinnebrew, M., Pavlova, A., Junk, M.J.N., Han, S., Biophys. J. 104, 472 (2013).Google Scholar
Jao, C.C., Der-Sarkissian, A., Chen, J., Langen, R., Proc. Natl. Acad. Sci. U.S.A. 101, 8331 (2004).Google Scholar
Altenbach, C., Greenhalgh, D.A., Khorana, H.G., Hubbell, W.L., Proc. Natl. Acad. Sci. U.S.A. 91, 1667 (1994).Google Scholar
Jao, C.C., Hegde, B.G., Chen, J., Haworth, I.S., Langen, R., Proc. Natl. Acad. Sci. U.S.A. 105, 19666 (2008).Google Scholar
Ball, P., Chem. Rev. 108, 74 (2008).Google Scholar
Chaplin, M., Nat. Rev. Mol. Cell Biol. 7, 861 (2006).Google Scholar
Fenimore, P.W., Frauenfelder, H., McMahon, B.H., Parak, F.G., Proc. Natl. Acad. Sci. U.S.A. 99, 16047 (2002).Google Scholar
Levy, Y., Onuchic, J.N., Annu. Rev. Biophys. Biomol. Struct. 35, 389 (2006).Google Scholar
Cox, J.K., Eisenberg, A., Lennox, R.B., Curr. Opin. Colloid Interface Sci. 4, 52 (1999).Google Scholar
Lee, K., Pan, F., Carroll, G.T., Turro, N.J., Koberstein, J.T., Langmuir 20, 1812 (2004).Google Scholar
Stoykovich, M.P., Muller, M., Kim, S.O., Solak, H.H., Edwards, E.W., de Pablo, J.J., Nealey, P.F., Science 308, 1442 (2005).Google Scholar
Okabea, Y., Kurihara, S., Yajima, T., Seki, Y., Nakamura, I., Takano, I., Surf. Coat. Technol. 196, 303 (2005).Google Scholar
Dill, K.A., Biochemistry 29, 7133 (1990).Google Scholar
Gau, H., Herminghaus, S., Lenz, P., Lipowsky, R., Science 283, 46 (1999).CrossRefGoogle Scholar
Privalov, P.L., Makhatadze, G.I., J. Mol. Biol. 232, 660 (1993).Google Scholar
Ruan, C.-Y., Lobastov, V.A., Vigliotti, F., Chen, S., Zewail, A.H., Science 304, 80 (2004).Google Scholar
Bico, J., Marzolin, C., Quere, D., Europhys. Lett. 47, 220 (1999).Google Scholar
Sun, T., Wang, G., Liu, H., Feng, L., Jiang, L., Zhu, D., J. Am. Chem. Soc. 125, 14996 (2003).Google Scholar
Lu, L., Berkowitz, M.L., J. Chem. Phys. 124, 101101 (2006).Google Scholar