Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T08:49:20.512Z Has data issue: false hasContentIssue false

Lasing in Rare-Earth-Doped Semiconductors: Hopes and Facts

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Semiconductors doped with rare-earth (RE) elements have attracted a lot of attention as alternative materials for producing electrically pumpe d semiconductor lasers whose emission wavelength is very weakly dependent on temperature. This prospect is especially attractive in the case of indirect-gap Silicon, whose photonic applications as the material for light emitters still remain more of a hope than a reality. In view of a desirable emission wavelength at 1.5 μm, a lot of research has concentrated on Si:Er (see Coffa et al. for a recent review). It is generally recognized that doping with Er ions presents one of the most promising approaches to Silicon photonics. However, despiteintensive investigations, stimulated emission has not been conclusively demonstrated for Si.Er or for any other RE-doped semiconductor. This is in striking contrast to optical amplifiers and lasers based on various erbium-doped glasses. In this article, which builds on recent articles in MRS Bulletin on Silicon photonics, we will address the issues relevant to efficient light generation by semiconductors doped with RE elements in general, and specifically by Si:Er-based structures.

The intraimpurity electronic structure of RE ions is dominate d by electron-electron and spin-orbit interactions within the 4f shell. In the case of Er3+, they produce separated J-multiplets with 4I15/2 and 4I13/2 as the ground and the lowest-lying excited states, respectively. Due to the effective Screening of 4f electrons by the outer electron Shells, the host has a very limited influence and changes only slightly the relative positions of the levels. Depending on a particular site symmetry, the even terms of the crystal field split the free-ion J-multiplets into the Stark components typically by several meV for the ground State. The energy-level diagram of an Er3+ ion in a cubic crystal field is shown in Figure 1, where the energy transfer paths relevant for Si:Er are also schematically indicated. The odd terms of the crystal field potential admix the states of opposite parity to the 4f11 configuration of the Er3+ ion, thereby introducing a certain degree of electric-dipole strength into the otherwise forbidden intra-4f-shell transitions. This effect enhance s slightly the magnetic-dipole strength of the 4I15/24I13/2 transition and is host- and site-dependent. There-fore, Er-related center s of different microstructure can be fairly easily identified.

Type
Photonic Applications of Rare-Earth-Doped Materials
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Coffa, S., Franzò, G., and Priolo, F., MRS Bull. 23 (4) (1998) p. 25.CrossRefGoogle Scholar
2.Przybylińska, H., Jantsch, W., Suprun-Belevitch, Yu., Steplkhova, M., Palmetshofer, L., Hendorfer, G., Kozanecki, A., Wilson, R.J., and Sealy, B.J., Phys. Rev. B 54 (1996) p. 2532.CrossRefGoogle Scholar
3.Auzel, F., Jean-Louis, A.M., and Toudic, Y., J. Appl. Phys. 66 (1989) p. 3952.CrossRefGoogle Scholar
4.Miniscalco, W.J., J. Lightwave Technol. 9 (1991) p. 234.CrossRefGoogle Scholar
5.Kozanecki, A., Langer, J.M., and Peaker, A.R., Acta Phys. Pol. 83 (1993) p. 59.CrossRefGoogle Scholar
6.Langer, J.M. and Van Hong, L., J. Phys. C: Solid State Phys. 17 (1984) p. L923; A. Suchocki and J.M. Langer, Phys. Rev. B 39 (1989) p. 7905.CrossRefGoogle Scholar
7.Langer, J.M., J. Lumin. 40/41 (1988) p. 589; J.M. Langer, in Electroluminescence, edited by S. Shionoya and H. Kobayashi, Springer Proceedings in Physics, vol. 38 (Springer-Verlag, Berlin, 1989) p. 16.CrossRefGoogle Scholar
8.Priolo, F., Franzö, G., Coffa, S., and Camera, A., Phys. Rev. B 57 (1998) p. 4443.CrossRefGoogle Scholar
9.Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L.C., Phys. Rev. B 54 (1996) p. 17603.CrossRefGoogle Scholar
10.Takahei, K., Taguchi, A., Nakagome, H., Uwai, K., and Whitney, P.S., J. Appl. Phys. 66 (1989) p. 4941.CrossRefGoogle Scholar
11.Hogg, R.A., Takahei, K., and Taguchi, A., Phys. Rev. B 56 (1997) p. 10255.CrossRefGoogle Scholar
12.Widdershoven, F.P. and J.P.M., Naus, Mater. Sci. Eng., B 4 (1989) p. 71; F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, J. Appl. Phys. 78 (1995) p. 3874.CrossRefGoogle Scholar
13.Delerue, C. and Lannoo, M., Phys. Rev. Lett. 67 (1991) p. 3006.CrossRefGoogle Scholar
14.Langer, J.M., Mater. Sci. Forum 143–147 (1994) p. 721.Google Scholar
15.Lannoo, M. and Delerue, C., in Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B., and Langer, D.W. (Mater. Res. Soc. Symp. Proc. 301, Pittsburgh, 1993) p. 385.Google Scholar
16.Takahei, K. and Taguchi, A., Mater. Sci. Forum 83–87 (1992) p. 641.CrossRefGoogle Scholar
17.Polman, A., J. Appl. Phys. 82 (1997) p. 1.CrossRefGoogle Scholar
18.Takahei, K. and Taguchi, A., J. Appl. Phys. 78 (1995) p. 5614.CrossRefGoogle Scholar
19.Taguchi, A., Takahei, K., Matsuoka, M., and Tohno, S., J. Appl. Phys. 84 (1998) p. 4471.CrossRefGoogle Scholar
20.Shin, J.H., van den Hoven, G.N., and Polman, A., Appl. Phys. Lett. 67 (1996) p. 377.CrossRefGoogle Scholar
21.Godlewski, M., Swiatek, K., Suchocki, A., and Langer, J.M., J. Lumin. 48/49 (1991) p. 23.CrossRefGoogle Scholar
22.Gregorkiewicz, T., Liesert, B.J. Heijmink, Tsimperidis, I., de Maat-Gersdorf, I., Ammerlaan, C.A.J., Godlewski, M., and Scholz, F., in Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B., and Langer, D.W. (Mater. Res. Soc. Symp. Proc. 301, Pittsburgh, 1993) p. 239.Google Scholar
23.Gregorkiewicz, T., Thao, D.T.X., and Langer, J.M., Phys. Status Solidi B 210 (1998) p. 737.3.0.CO;2-9>CrossRefGoogle Scholar
24.Cerne, J., Markelz, A.G., Sherwin, M.S., Allen, S.J., Sundaram, M., Gossard, A.C., van Son, P.C., and Bimberg, D., Phys. Rev. B 51 (1995) p. 5253.CrossRefGoogle Scholar
25.Tsimperidis, I., Gregorkiewicz, T., Bekman, H.H.P.Th., and Langerak, C.J.G.M., Phys. Rev. Lett. 81 (1998) p. 4748.CrossRefGoogle Scholar
26.Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70 (1991) p. 2672.CrossRefGoogle Scholar
27.Efeoglu, H., Evans, J.H., Jackman, T.E., Hamilton, B., Houghton, D.C., Langer, J.M., Peaker, A.R., Perovic, D.D., Poole, I., Ravel, N., Hemment, P., and Chan, C.W., Seinicond. Sei. Technol. 8 (1993) p. 236.Google Scholar
28.Gregorkiewicz, T., van Wezep, D.A., Bekman, H.H.P. Th., and Ammerlaan, C.A.J., Phys. Rev. Lett. 59 (1987) p. 1702.CrossRefGoogle Scholar
29.Gregorkiewicz, T., Bekman, H.H.P. Th., and Ammerlaan, C.A.J., Phys. Rev. B 46 (1992) p. 4582.CrossRefGoogle Scholar
30.Peaker, A.R. (private communication).Google Scholar
31.Peaker, A.R., Efeoglu, H., Langer, J.M., Wright, A.C., Poole, I., and Singer, K.E., in Rare Earth Doped Semico)iductors, edited by Pomrenke, G.S., Klein, P.B., and Langer, D.W. (Mater. Res. Soc. Symp. Proc. 301, Pittsburgh, 1993) p. 337.Google Scholar