Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T07:45:20.003Z Has data issue: false hasContentIssue false

Laser Direct-Write Processing

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Direct-write techniques enable computer-controlled two- and three-dimensional pattern formation in a serial fashion. Among these techniques, the versatility offered by laser-based direct-write methods is unique, given their ability to add, remove, and modify different types of materials without physical contact between a tool or nozzle and the material of interest. Laser pulses used to generate the patterns can be manipulated to control the composition, structure, and even properties of individual three-dimensional volumes of materials across length scales spanning six orders of magnitude, from nanometers to millimeters. Such resolution, combined with the ability to process complex or delicate material systems, enables laser direct-write tools to fabricate structures that are not possible to generate using other serial or parallel fabrication techniques. The goal of the articles in this issue of MRS Bulletin is to illustrate the range of materials processing capabilities, fundamental research opportunities, and commercially viable applications that can be achieved using recently developed laser direct-write techniques. We hope that the articles provide the reader with a fresh perspective on the challenges and opportunities that these powerful techniques offer for the fabrication of novel devices and structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

References

1. See for instance, Chrisey, D.B., Science 289 (2000) p. 879; A. Piqué and D.B. Chrisey, eds., Direct-Write Technologies for Rapid Prototyping Applications (Academic Press, San Diego, 2002).CrossRefGoogle Scholar
2.Kai, C.C., Fai, L.K., and Sing, L.C., Rapid Prototyping: Principles and Applications (World Scientific, London, 2004).Google Scholar
3.Venuvinod, P.K. and Ma, W., Rapid Prototyping: Laser-Based and Other Technologies (Kluwer Academic, Norwell, MA, 2003).Google Scholar
4.Piqué, A. and Chrisey, D.B., eds., Direct-Write Technologies for Rapid Prototyping Applications (Academic Press, San Diego, 2002).Google Scholar
5.Gregory, K.W. and Anderson, R.R., IEEE J. Quant. Elect. 26 (1990) p. 2289.CrossRefGoogle Scholar
6.Couty, P., Wagner, F., and Hoffmann, P., Opt. Eng. 44 068001 (2005).CrossRefGoogle Scholar
7.Bäuerle, D., Laser Processing and Chemistry, 3rd Ed. (Springer, Berlin, 2000).CrossRefGoogle Scholar
8.Steen, W.M. and Watkins, K., Laser Materials Processing, 3rd Ed. (Springer, Berlin, 2003).CrossRefGoogle Scholar
9.Endert, H., Patzel, R., and Basting, D., Opt. Quant. Elect. 27 (1995) p. 1319.CrossRefGoogle Scholar
10.Gower, M.C., Opt. Exp. 7 (2000) p. 56.CrossRefGoogle Scholar
11.Kureil, A. and Dahotre, N.B., J. Biomed. Appl. 5 (2005) p. 5.Google Scholar
12.Ding, X., Kawaguchi, Y., Niino, H., and Yabe, A., Appl. Phys. A 75 (2002) p. 641.CrossRefGoogle Scholar
13.Kopitkovas, G., Lippert, T., David, C., Wokaun, A., and Gobrecht, J., Microelectron. Eng. 67 (2003) p. 438.CrossRefGoogle Scholar
14.Tornari, V., Zafiropulos, V., Bonarou, A., Vainos, N.A., and Fotakis, C., Opt. Lasers Eng. 34 (2000) p. 309.CrossRefGoogle Scholar
15.Pronko, P.P., Dutta, S.K., Squier, J., Rudd, J.V., Du, D., and Mourou, G., Opt. Commun. 114 (1995) p. 106.CrossRefGoogle Scholar
16.Lenzner, M., Kruger, J., Kautek, W., and Krausz, F., Appl. Phys. A 68 (1999) p. 369.CrossRefGoogle Scholar
17.Feinleib, J., deNeufville, J., Moss, S.C., and Ovshinsky, S.R., Appl. Phys. Lett. 18 (1971) p. 254.CrossRefGoogle Scholar
18.Vilar, R., J. Laser App. 11 (1999) p. 64.CrossRefGoogle Scholar
19.Bourell, D.L., Marcus, H.L., Barlow, J.W., and Beaman, J.J., Int. J. Powder Metall. 28 (1992) p. 369.Google Scholar
20.Dietrich, T.R., Ehrfeld, W., Lacher, M., Kramer, M., and Speit, B., Microelectron. Eng. 30 (1996) p. 497.CrossRefGoogle Scholar
21.Itoh, K., Watanabe, W., Nolte, S., and Schaffer, C.B., MRS Bull. 31 (8) (2006) p. 620.CrossRefGoogle Scholar
22.Glezer, E.N., Milosavljevic, M., Huang, L., Finlay, R.J., Her, T.H., Callan, J.P., and Mazur, E., Opt. Lett. 21 (1996) p. 2023.CrossRefGoogle Scholar
23.Herman, P.R., Marjoribanks, R.S., Oettl, A., Chen, K., Konovalov, I., and Ness, S., Appl. Surf. Sci. 154 (2000) p. 577.CrossRefGoogle Scholar
24.Zoubir, A., Richardson, M., Rivero, C., Schulte, A., Lopez, C., Richardson, K., Ho, N., and Vallee, R., Opt. Lett. 29 (2004) p. 748.CrossRefGoogle Scholar
25.Cheng, Y., Sugioka, K., and Midorikawa, K., Opt. Lett. 29 (2004) p. 2007.CrossRefGoogle Scholar
26.Bohandy, J., Kim, B.F., and Adrian, F.J., J. Appl. Phys. 60 (1986) p. 1538.CrossRefGoogle Scholar
27.Chrisey, D.B., Piqué, A., Fitz-Gerald, J., Auyeung, R.C.Y., McGill, R.A., Wu, H.D., and Duignan, M., Appl. Surf. Sci. 154 (2000) p. 593.CrossRefGoogle Scholar
28.Pique, A., Auyeung, R.C.Y., Stepnowski, J.L., Weir, D.W., Arnold, C.B., McGill, R.A., and Chrisey, D.B., Surf. Coat. Technol. 163 (2003) p. 293.CrossRefGoogle Scholar
29.Renn, M.J. and Pastel, R., J. Vac. Sci. Tech. B 16 (1998) p. 3859.CrossRefGoogle Scholar
30.Allen, S.D., J. Appl. Phys. 52 (1981) p. 6501.CrossRefGoogle Scholar
31.Serbin, J., Egbert, A., Ovsianikov, A., Chichkov, B.N., Houbertz, R., Domann, G., Schulz, J., Cronauer, C., Frohlich, L., and Popall, M., Opt. Lett. 28 (2003) p. 301.CrossRefGoogle Scholar