Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:51:07.181Z Has data issue: false hasContentIssue false

Ion-Beam-Assisted Deposition and Synthesis

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Concurrent energetic particle bombardment during film deposition can strongly modify the structural and chemical properties of the resulting thin film. The interest in this technique, ion-assisted deposition, comes about because it can be used to produce thin films with properties not achievable by conventional deposition. Bombardment by low energy ions occurs during almost all plasma-based thin film deposition techniques. Bombardment of a growing film, particularly by accelerated ions, can also be combined with non-plasma-based deposition techniques, such as evaporation, to simulate some of the effects observed with sputtering. The bombarding particle flux is usually controllable so that the arrival rate, energy, and species can be independently varied from the depositing flux. Thus, a basic aspect of ion-beam-based deposition techniques is the “control” often absent in plasma-based techniques. In plasmas, the voltage, current, and pressure are all interdependent. The energetic bombardment at the substrate-film interface depends on the various properties of the plasma, as does the deposition rate. It is often difficult, or even impossible, to decouple these processes. With ion-beam-based deposition techniques, the ion bombardment is essentially independent of the deposition process, and both can be more easily controlled.

The incident energetic particle contributes some of its energy or momentum to irreversibly change the dynamics of the film surface. The incident particle may also be incorporated into the growing film, changing the film's chemical nature. The changes induced by particle bombardment during deposition are often not characteristic of equilibrium thermodynamics because the incident particle's energy is often many times the local adsorption or binding energy.

Type
Advances in Ion Beam Processing and Synthesis
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Harper, J.M.E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.R., in Ion Bombardment Modification of Surfaces, edited by Auciello, O. and Kelly, R. (Elsevier, NY, 1984) p. 127.Google Scholar
2.Vossen, J.L. and Cuomo, J.J., in Thin Film Processes, edited by Vossen, J.L. and Kern, W. (Academic, NY, 1978) p. 12.Google Scholar
3.Greene, J.E. and Barnett, S.A., J. Vac. Sci. & Technol. 21 (1982) p. 285.CrossRefGoogle Scholar
4.Cuomo, J.J., Harper, J.M.E., Guarnieri, C.R., Yee, D.S., Attanasio, L.J., Angilello, J., Wu, C.T., and Hammond, R.H., J. Vac. Sci. & Technol. 20 (1982) p. 349.CrossRefGoogle Scholar
5.Kaufman, H.R., NASA Tech. Note TND-585, January 1961.Google Scholar
6.Kaufman, H.R., in Advances in Electronics and Electron Physics, edited by Marton, L. (Academic Press, NY, 1974) Vol. 36, p. 265.Google Scholar
7.Kaufman, H.R., Cuomo, J.J., and Harper, J.M.E., J. Vac. Sci. & Technol. 21 (1982) p. 725.CrossRefGoogle Scholar
8.Kaufman, H.R., Robinson, R.S., and Seddon, I., J. Vac. Sci. & Technol. (1987) in press.Google Scholar
9.Bunshah, R.F. in Deposition Technologies for Films and Coatings, edited by Bunshah, R.F. (Noyes, NJ, 1982) p. 5.Google Scholar
10.Takagi, T., Thin Solid Films 92 (1982) p. 1.CrossRefGoogle Scholar
11.Hoffman, D.W. and Thornton, J.A., Thin Solid Films 40 (1977) p. 355.CrossRefGoogle Scholar
12.Thornton, J.A. and Hoffman, D.W., J. Vac. Sci. & Technol. 18 (1981) p. 203.CrossRefGoogle Scholar
13.Thornton, J.A. and Hoffman, D.W., J. Vac. Sci. & Technol. A3 (1985) p. 576.CrossRefGoogle Scholar
14.Parmigiani, F., Kay, E., Huang, T.C., and Swalen, J.D., Appl. Opt. 24 (1985) p. 3335.CrossRefGoogle Scholar
15.Huang, T.C., Lim, G., Parmigiani, F., and Kay, E., J. Vac. Sci. & Technol. A3 (1985) p. 2161.CrossRefGoogle Scholar
16.Parmigiani, F., Kay, E., Huang, T.C., Perrin, J., Jurich, M., and Swalen, J.D., Phys. Rev. B 33 (1986) p. 879.CrossRefGoogle Scholar
17.Roy, Ronnon A., private communication, December 1986.Google Scholar
18.Dobrev, D., Thin Solid Films 92 (1982) p. 41.CrossRefGoogle Scholar
19.Hentzell, H.T.G., Harper, J.M.E., and Cuomo, J.J., J. Appl. Phys. 58 (1985) p. 556.CrossRefGoogle Scholar
20.Yu, Lock See, Harper, J.M.E., Cuomo, J.J., and Smith, D.A., J. Vac. Sci. & Technol. A4 (1986) p. 443.CrossRefGoogle Scholar
21.Yamada, I., Takaoka, H., Inokawa, H., Usui, H., Cheng, S.C., and Takagi, T., Thin Solid Films 92 (1982) p. 137.CrossRefGoogle Scholar
22.Babaev, V.O., Bybov, Ju.V., and Guseva, M.B., Thin Solid Films 38 (1976) p. 1.CrossRefGoogle Scholar
23.Marinov, M., Thin Solid Films 46 (1977) p. 267.CrossRefGoogle Scholar
24.Laibowitz, R.B., Alessandrini, E.I., Guarnieri, C.R., and Voss, R.F., J. Vac. Sci. & Technol. A1 (1983) p. 438.CrossRefGoogle Scholar
25.Netterfield, R.P. and Martin, P.J., Appl. Surf. Sci. 25 (1986) p. 265.CrossRefGoogle Scholar
26.Rossnagel, S.M., Robinson, R.S., and Kaufman, H.R., Surf. Sci. 123 (1982) p. 89.CrossRefGoogle Scholar
27.Al-Jumaily, G.A., Wilson, S.R., Mc-Nally, J.J., Jungling, K.C., and McNeil, J.R., J. Vac. Sci. & Technol. A4 (1986) p. 439.CrossRefGoogle Scholar
28.Ota, T., in Proceedings of the International Workshop on Ion-Based Techniques for Film Formation, edited by Takagi, T. (Tokyo, 1981).Google Scholar
29.Shimizu, H., Ono, M., Koyama, N., and Ishida, Y., J. Appl. Phys. 51 (1982) p. 3044.CrossRefGoogle Scholar
30.Yamada, I., Takaoka, H., Usui, H., and Takagi, T., J. Vac. Sci. & Technol. A4 (1986) p. 722.CrossRefGoogle Scholar
31.Itoh, T., Nakamura, T., Muromachi, M., and Sugiyama, T., J. Appl. Phys. 16 (1977) p. 533.Google Scholar
32.Krikorian, E., Crisp, M.J., and Sneed, R.J., Air Force Tech. Rep. AFML-TR-75-63 (1975).Google Scholar
33.Castellano, R.N. and Feinstein, L.G., JVST 16 (1979) p. 184.Google Scholar
34.Fan, J.C.C., Appl. Phys. Lett. 34 (1979) p. 515.CrossRefGoogle Scholar
35.Shanfield, S. and Wolfson, R., JVST A1 (1983) p. 512.Google Scholar
36.Hirsch, E.H. and Varga, I.K., Thin Solid Films 69 (1980) p. 99.CrossRefGoogle Scholar
37.Hoffman, D.W. and Gaerttner, M.R., J. Vac. Sci. & Technol. A1 (1983) p. 437.Google Scholar
38.Cuomo, J.J., Yee, D.S., Attanasio, L.J., Harper, J.M.E., and Angilello, J., J. Vac. Sci. & Technol. (submitted 1986).Google Scholar
39.Yee, D.S., Floro, J., Mikalson, D.J., Cuomo, J.J., Ahn, K.Y., and Smith, D.A., J. Vac. Sci. & Technol. A3 (1985) p. 2121.CrossRefGoogle Scholar
40.Huang, T.C., Lim, G., Parmigiani, F., and Kay, E., J. Vac. Sci. & Technol. A3 (1985) p. 2161.CrossRefGoogle Scholar
41.Kay, E., J. Vac. Sci. & Technol. A4 (1986) p. 462.CrossRefGoogle Scholar
42.Sun, S.S., J. Vac. Sci. & Technol., A4 (1986) p. 572.CrossRefGoogle Scholar
43.Harper, J.M.E., Cuomo, J.J., and Hentzell, H.T.G., Appl. Phys. Lett. 43 (1983) p. 547.CrossRefGoogle Scholar
44.Wittmer, M., Appl. Phys. Lett. 36 (1980) p. 456; 37 (1980) p. 540.CrossRefGoogle Scholar
45.Wittmer, M., J. Appl. Phys. 53 (1982) p. 1007.CrossRefGoogle Scholar
46.Ting, C-Y., J. Vac. Sci. Technol. 21 (1982) p. 14.CrossRefGoogle Scholar
47.Fabrication of ZrN Coatings” in IBM Technical Disclosure Bulletin, Vol. 25 No. 11AApril (1983) p. 5506.Google Scholar
48.Krusin-Elbaum, L., Wittmer, M., Ting, C-Y., and Cuomo, J.J., Thin Solid Films 104 (1983) p. 8187.CrossRefGoogle Scholar
49.Johansson, B.O., Sundgren, J-E., Helmersson, U., and Hibbs, M.K., Appl. Phys. Lett. 44 (1984) p. 670672.CrossRefGoogle Scholar
50.Rudy, E., Metal. Trans. 1 (1970) p. 1249.CrossRefGoogle Scholar
51.Yee, D.S., Cuomo, J.J., Frisch, M.A., and D.Smith, P.E., J. Vac. Sci. & Technol. A4 (1986) p. 381.CrossRefGoogle Scholar
52.Schwarz, Karl-Heinz, private communication, 1985.Google Scholar
53.Smith, F.T.J., J. Appl. Phys. 41 (1970) p. 4227.CrossRefGoogle Scholar
54.Equilibrium and Meta-Stable Copper-Oxygen Compound Formation by Simultaneous Copper Evaporation and Low Energy Oxygen Ion Bombardment,” Guarnieri, C.R., Offsey, S.D., and Cuomo, J.J., American Vacuum Society National Symposium, Houston, TX, November 1985.Google Scholar
55.Martin, P.J., J. Mater. Sci. 21 (1986) p. 1.CrossRefGoogle Scholar
56.Nakahara, S., Thin Solid Films 64 (1974) p. 149.CrossRefGoogle Scholar
57.Macleod, H.A., J. Vac. Sci. & Technol. A4 (1986) p. 418.CrossRefGoogle Scholar
58.Rossnagel, S.M. and Sites, J.R., J. Vac. Sci. & Technol. A2 (1984) p. 376.CrossRefGoogle Scholar
59.Sites, J.R., Demiryont, H., and Kerwin, D.B., J. Vac. Sci. & Technol. A3 (1985) p. 656.CrossRefGoogle Scholar
60.Kalb, A., Mildebrath, M., and Sanders, V., J. Vac. Sci. & Technol. A4 (1986) p. 436.CrossRefGoogle Scholar
61.McNally, J.J., Al-Jumaily, G.A., and McNeil, J.R., J. Vac. Sci. & Technol. A4 (1986) p. 437.CrossRefGoogle Scholar
62.Martin, P.J., Macleod, H.A., Netterfield, R.P., and Sainty, C.G., Appl. Opt. 22 (1983) p. 178.CrossRefGoogle Scholar
63.Allen, T.H., Proc. Soc. Photo-Opt. Instrum. Eng. 325 (1982) p. 93.Google Scholar
64.Bland, R.D., Kominiak, G.J., and Mattox, D.M., J. Vac. Sci. & Technol. 11 (1974) p. 671.CrossRefGoogle Scholar
65.Martin, P.J., Netterfield, R.P., and Sainty, W.G., J. Appl. Phys. 55 (1984) p. 235.CrossRefGoogle Scholar
66.Scaglione, S. and Emiliani, G., J. Vac. Sci. & Technol. A3 (1986) p. 2702.Google Scholar
67.Netterfield, R.P., Sainty, W.G., Martin, P.J., and Sie, S.H., Appl. Optics 24 (1985) p. 2267.CrossRefGoogle Scholar
68.Muller, Karl-Heinz, J. Vac. Sci. & Technol. A4 (1986) p. 461.CrossRefGoogle Scholar
69.Muller, Karl-Heinz, J. Vac. Sci. & Technol. A4 (1986) p. 184.CrossRefGoogle Scholar