Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:37:36.414Z Has data issue: false hasContentIssue false

Ion-Beam Rocking Measurements of Small Lattice Strains

Published online by Cambridge University Press:  17 June 2015

Get access

Extract

This article describes a new technique for nuclear microprobes that has been developed to produce angle-resolved channeling information from small areas of crystalline material without any rotation or translation of the sample. This “beam rocking” system, with a focused MeV ion beam, has been used to detect and quantify small interface rotation angles in strained Si1−xGex/Si samples with 0.015 < x ξ 0.175, as well as samples with graded germanium composition. By eliminating possible rotation errors caused by translation of the sample stage or backlash in the gears of a goniometer, smaller rotation angles can be measured than with standard ion-channeling analysis.

Channeling is frequently used in ion-beam analysis to characterize crystalline materials (see the previous article by King). If the crystal is positioned near axial or planar alignment and then tilted incrementally with respect to the beam, as the sample is brought into channeling alignment, the yield of interactions with the host lattice will be reduced as the ions become channeled, since they are less likely to interact closely with atomic nuclei. Angular scans can be used to measure strain in heteroepitaxial layers by measuring the rotation of off-normal axes using this process.

Type
Focused MeV Ion Beams for Materials Analysis and Microfabrication
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Feldman, L.C., Mayer, J.W., and Picraux, S.T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
2.Diskett, D.J., Avery, A.J., and Marshall, R.E.T., Nucl. Instrum. Methods B 64 (1992) p. 836.CrossRefGoogle Scholar
3.de Kerckhove, D.G., Breese, M.B.H., and Grime, G.W., Nucl. Instrum. Methods B 129 (1997) p. 534.CrossRefGoogle Scholar
4.Joy, D.C., Newbury, D.E., and Davidson, D.L., J. Appl. Phys. 53 (1982) p. R81.CrossRefGoogle Scholar
5.Grime, G.W. and Watt, F., Beam Optics of Quadrupole Probe-forming Systems (Adam Hilger, Bristol, UK, 1984).Google Scholar
6.de Kerckhove, D.G., Breese, M.B.H., and Grime, G.W., Nucl. Instrum. Methods B 140 (1998) p. 199.CrossRefGoogle Scholar
7.Neufeld, E., Sticht, A., Luigart, A., Brunner, K., and Abstreiter, G., Appl. Phys. Lett. 73 (1998) p. 3061.CrossRefGoogle Scholar
8.People, R., IEEE J. Quantum Electron. 22 (9) (1986) p. 1696.CrossRefGoogle Scholar
9.Lang, D.V., People, R., Bean, J.C., and Sergent, A.M., Appl. Phys. Lett. 47 (1985) p. 1333.CrossRefGoogle Scholar
10.Dutartre, D., Bremond, D., Souifi, A., and Benyattou, T., Phys. Rev. B: Condens. Matter 44 (1991) p. 11525.CrossRefGoogle Scholar
11.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27 (1974) p. 118.Google Scholar
12.People, R. and Bean, J.C., Appl. Phys. Lett. 47 (1985) p. 322.CrossRefGoogle Scholar
13.Picraux, S.T., Doyle, B.L., and Tsao, J.Y., in Semiconductors and Metals, Vol. 33, edited by Pearsall, T.P. (Academic Press, New York, 1991).Google Scholar
14.Breese, M.B.H., Nucl. Instrum. Methods B 132 (1997) p. 540.CrossRefGoogle Scholar
15.Akbari, H., Altuna, X., Bardin, S., Bellazzini, R., Biryukov, V., Brez, A., Bussa, M.P., Busso, L., Calcaterra, A., Carboni, G., Costantini, F., Desangro, R., Elsener, K., Fenoli, F., Ferrari, A., Ferri, G. P., Ferroni, F., Fidecaro, G., Freund, A., Guinand, R., Gyr, M., Herr, W., Hilaire, A., Jensen, B.N., Klem, J., Lanceri, L., Maier, K., Massai, M.M., Mertens, V., Moller, S.P., Morganti, S., Palamara, O., Peraire, S., Petrera, S., Placidi, M., Santacesaria, R., Scandale, W., Schmidt, R., Taratin, A.M., Tosello, F., Uggerhøj, E., Vettermann, B., Vita, P.F., Vuagnin, G., Weisse, E., Weisz, S., Phys. Lett. B 313 (1993) p. 491.CrossRefGoogle Scholar
16.Ellison, J.A., Nucl. Phys. B 206 (1982) p. 205.CrossRefGoogle Scholar
17.de Kerckhove, D.G., Breese, M.B.H., Wilkinson, A.J., and Grime, G.W., Nucl. Instrum. Methods. B 136-138 (1998) p. 1240.CrossRefGoogle Scholar
18.Wilkinson, A.J., Ultramicroscopy 62 (1996) p. 237.CrossRefGoogle Scholar
19.Holy, V., Li, J.H., Bauer, G., Schäffler, F., and Herzog, H. -J., J. Appl. Phys. 78 (1995) p. 5013.CrossRefGoogle Scholar
20.de Kerckhove, D.G., Breese, M.B.H., Smulders, P.J.M., and Jamieson, D.N., Appl. Phys. Lett. 74 (1999) p. 227.CrossRefGoogle Scholar
21.Breese, M.B.H., de Kerckhove, D.G., Smulders, P.J.M., Bik, W.A. Arnold, and Boerma, D. (unpublished manuscript).Google Scholar