Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:46:04.555Z Has data issue: false hasContentIssue false

Ion Dynamics at Interfaces: Nuclear Magnetic Resonance Studies

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Interface engineering and the study of diffusion and transport processes through and along interfacial regions play important roles in materials science and energy research. For the latter, nanostructured materials are increasingly considered to act as powerful electrodes and solid electrolytes in sustainable energy systems, such as Li ion batteries. This is due to reduced diffusion lengths achieved when going to the nanometer scale and the fact that nanocrystalline materials with an average particle size of less than about 50 nm often show an enhanced diffusivity of their charge carriers. In this article, we show examples of how solid-state nuclear magnetic resonance (NMR) spectroscopy can be used to study the diffusion parameters of Li cations located in the interfacial regions separately from those in the interior of the grains. This article will demonstrate the future challenges and perspectives of Li NMR as a powerful tool of probing dynamic properties in functional materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dresselhaus, M.S., Dresselhaus, G., in Materials Interfaces—Atomic-Level Structure and Properties, Wolf, D., Yip, S., Eds. (Chapman Hall, London, 1992), pp. 407430.Google Scholar
2Siegel, R.W., in Materials Interfaces—Atomic-Level Structure and Properties, Wolf, D., Yip, S., Eds. (Chapman Hall, London, 1992), pp. 431460.Google Scholar
3Müller-Warmuth, W., in Progress in Intercalation Research, Müller-Warmuth, W., Schöllhorn, R., Eds. (Kluwer Academic Publishers, Dordrecht, 1994), pp. 339456.CrossRefGoogle Scholar
4Kleinberg, R.L., Silbernagel, B.G., Solid State Commun. 36, 345 (1980).CrossRefGoogle Scholar
5Küchler, W., Heitjans, P., Payer, A., Schöllhorn, R., Solid State Ionics 70/71, 434 (1994).CrossRefGoogle Scholar
6Wilkening, M., Küchler, W., Heitjans, P., Phys. Rev. Lett. 97, 065901 (2006).CrossRefGoogle Scholar
7Wilkening, M., Heitjans, P., Diffus. Fundam. 6, 40 (2007).Google Scholar
8Wilkening, M., Heitjans, P., Phys. Rev. B 77, 024311 (2008).CrossRefGoogle Scholar
9Estrade, H., Conrad, J., Lauginie, P., Heitjans, P., Fujara, F., Buttler, W., Kiese, G., Ackermann, H., Guerard, D., Physica. 99B, 531 (1980).Google Scholar
10Heitjans, P., Solid State Ionics 18/19, 50 (1986).CrossRefGoogle Scholar
11Freiländer, P., Heitjans, P., Ackermann, H., Bader, B., Kiese, G., Schirmer, A., Stöckmann, H.-J., van der Marel, C., Magerl, A., Zabel, H., Z. Phys. Chem. NF 151, 93 (1987).CrossRefGoogle Scholar
12Heitjans, P., Synth. Met. 23, 257 (1988).CrossRefGoogle Scholar
13Heitjans, P., Faber, W., Schirmer, A., J. Non-Cryst. Solids 131–133, 1053 (1991).CrossRefGoogle Scholar
14Schirmer, A., Heitjans, P., Z. Naturforsch., A: Phys. Sci. 50, 643 (1995).CrossRefGoogle Scholar
15Puin, W., Heitjans, P., Dickenscheid, W., Gleiter, H., in Defects in Insulating Materials, Kanert, O., Spaeth, J., Eds. (World Scientific, Singapore, 1993) pp. 137139.Google Scholar
16Dickenscheid, W., Birringer, R., Gleiter, H., Kanert, O., Michel, B., Günther, B., Solid State Comm. 79, 683 (1991).CrossRefGoogle Scholar
17Apte, P., Suits, B.H., Nanostruct. Mater. 10, 917 (1998).CrossRefGoogle Scholar
18Orimo, S., Kimmerle, F., Majer, G., Phys. Rev. B 63, 094307 (2001).CrossRefGoogle Scholar
19Bekaert, E., Balaya, P., Murugavel, S., Maier, J., Menetrier, M., Chem. Mater. 21, 856 (2009).CrossRefGoogle Scholar
20Chadwick, A.V., Poplett, I.J.F., Maitland, D.T.S., Smith, M.E., Chem. Mater. 10, 864 (1998).CrossRefGoogle Scholar
21Scholz, G., Stösser, R., Klein, J., Silly, G., Buzare, J.Y., Laligant, Y., Ziemer, B., J. Phys.: Condens. Matter 14, 2101 (2002).Google Scholar
22Mathur, S., Veith, M., Shen, H., Hufner, S., Jilavi, M.H., Chem. Mater. 14, 568 (2002).CrossRefGoogle Scholar
23Sepelak, V., Indris, S., Bergmann, I., Feldhoff, A., Becker, K.D., Heitjans, P., Solid State Ionics 117, 2487 (2006).CrossRefGoogle Scholar
24Kumar, N.V.R., Prinz, S., Cai, Y., Zimmermann, A., Aldinger, F., Berger, F., Müller, K., Acta Materialia 53, 4567 (2005).CrossRefGoogle Scholar
25Bureau, B., Guérault, H., Silly, G., Buzaré, J.Y., Grenèche, J.M., J. Phys.: Condens. Matter 11, L423 (1999).Google Scholar
26O'Dell, L.A., Savin, S.L.P., Chadwick, A.V., Smith, M.E., Nanotechnology 16, 1836 (2005).CrossRefGoogle Scholar
27Sabarinathan, V., Ganapathy, C.V., J. Nano-science Nanotechnology 8, 321 (2008).CrossRefGoogle Scholar
28Sepelak, V., Becker, K.D., Bergmann, I., Suzuki, S., Indris, S., Feldhoff, A., Heitjans, P., Grey, C., Mater. Chem. 21, 2518 (2009).CrossRefGoogle Scholar
29Gleiter, H., Acta Mater. 48, 1 (2000).Google Scholar
30Knauth, P., Tuller, H.L., Solid State Ionics 136–137, 1215 (2000).CrossRefGoogle Scholar
31Chadwick, A.V., Diffus. Fundam. 2, 44 (2005).Google Scholar
32Heitjans, P., Indris, S., J. Phys., Condens. Matter 15, R1257 (2003).CrossRefGoogle Scholar
33Karch, J., Birringer, R., Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
34Yip, S., Nature 391, 532 (1998).CrossRefGoogle Scholar
35Baller, J., Krüger, J.K., Birringer, R., Proust, C., J. Phys., Condens. Matter 12, 5403 (2000).CrossRefGoogle Scholar
36Betz, U., Hahn, H., Nanostruct. Mater. 12, 911 (1999).CrossRefGoogle Scholar
37Tuller, H.L., J. Electroceram. 1, 211 (1997).CrossRefGoogle Scholar
38George, A.M., Íñiguez, J., Bellaiche, L., Nature 413, 54 (2001).CrossRefGoogle Scholar
39Demetry, C., Shi, X., Solid State Ionics 118, 271 (1998).CrossRefGoogle Scholar
40Nan, C.-W., Holten, S., Birringer, R., Gao, H., Kliem, H., Gleiter, H., Phys. Status Solidi A 164, R1 (1997).3.0.CO;2-#>CrossRefGoogle Scholar
41Wittmer, H., Holten, S., Kliem, H., Breuer, H.D., Phys. Status Solidi A 181, 461 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
42Mamiya, H., Nakatani, I., Furubayashi, T., Phys. Rev. Lett. 80, 177 (1998).CrossRefGoogle Scholar
43Jonsson, T., Mattsson, J., Djurberg, C., Khan, F.A., Nordblad, P., Svedlindh, P., Phys. Rev. Lett. 75, 4138 (1995).CrossRefGoogle Scholar
44Stewart, S.J., Borzi, R.A., Punte, G., Mercader, R.C., Garcia, F., J. Phys., Condens. Matter 13, 1743 (2001).CrossRefGoogle Scholar
45Garcia-Otero, J., Porto, M., Rivas, J., Bunde, A., Phys. Rev. Lett. 84, 167 (2000).CrossRefGoogle Scholar
46Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Phys. Rev. B 51, 11527 (1995).CrossRefGoogle Scholar
47Zhang, D., Klabunde, K.J., Sorensen, K.J., Hadjipanayis, G.C., Phys. Rev. B 58, 14167 (1998).CrossRefGoogle Scholar
48Weller, H., Schmidt, H.M., Koch, U., Fojtik, A., Baral, S., Henglein, A., Kunath, A., Weiss, K., Dieman, E., Chem. Phys. Lett. 124, 557 (1986).CrossRefGoogle Scholar
49Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., Alivisatos, A.P., Nature 404, 59 (2000).CrossRefGoogle Scholar
50Shim, M., Guyot-Sionnest, P., Nature 407, 981 (2000).CrossRefGoogle Scholar
51Nan, C.-W., Birringer, R., Krauss, W., Gao, H., Gleiter, H., Phys. Status Solidi A 162, R3 (1997).3.0.CO;2-B>CrossRefGoogle Scholar
52Schmechel, R., Kennedy, M., von Seggern, H., Winkler, H., Kolbe, M., Fischer, R.A., Xaomao, L., Benker, A., Winterer, M., Hahn, H., J. Appl. Phys. 89, 1679 (2001).CrossRefGoogle Scholar
53Linsebigler, A.L., Lu, G., Yates, J.T. Jr, Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
54Ying, J.Y., Sun, T., J. Electroceram. 1, 219 (1997).CrossRefGoogle Scholar
55Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
56Weissmüller, J., Ehrhardt, H., Phys. Rev. Lett. 81, 1114 (1998).CrossRefGoogle Scholar
57Jacob, K.T., Jayadevan, K.P., Mallya, R.M., Waseda, Y., Adv. Mater. 12, 440 (2000).3.0.CO;2-#>CrossRefGoogle Scholar
58Bork, D., Heitjans, P., J. Phys. Chem. B 102, 7303 (1998).CrossRefGoogle Scholar
59Bork, D., Heitjans, P., J. Phys. Chem. B 105, 9162 (2001).CrossRefGoogle Scholar
60Indris, S., Heitjans, P., Roman, H.E., Bunde, A., Phys. Rev. Lett. 84, 2889 (2000).CrossRefGoogle Scholar
61Puin, W., Heitjans, P., Nanostruct. Mater. 6, 885 (1995).CrossRefGoogle Scholar
62Puin, W., Rodewald, S., Ramlau, R., Heitjans, P., Maier, J., Solid State Ionics 131, 159 (2000).CrossRefGoogle Scholar
63Brossmann, U., Würschum, R., Södervall, U., Schaefer, H.-E., Nanostruct. Mater. 12, 871 (1999).CrossRefGoogle Scholar
64Knauth, P., J. Solid State Electrochem. 147, 115 (2002).Google Scholar
65Chiang, Y.-M., Lavik, E.B., Kosacki, I., Tuller, H.L., Ying, J.Y., J. Electroceram. 1, 7 (1997).CrossRefGoogle Scholar
66Tschöpe, A., Sommer, E., Birringer, R., Solid State Ionics 139, 255 (2001).CrossRefGoogle Scholar
67Lee, J., Hwang, J.H., Mashek, J.J., Mason, F.O., Miller, A.E., Siegel, R.W., J. Mater. Res. 10, 2295 (1995).CrossRefGoogle Scholar
68Nan, C.-W., Tschöpe, A., Holten, S., Kliem, H., Birringer, R., J. Appl. Phys. 85, 7735 (1995).CrossRefGoogle Scholar
69Li, G., Li, L., Feng, S., Wang, M., Zhang, L., Yao, X., Adv. Mater. 11, 146 (1999).3.0.CO;2-7>CrossRefGoogle Scholar
70Maier, J., Prog. Solid State Chem. 23, 171 (1995).CrossRefGoogle Scholar
71Maier, J., Nat. Mater. 4, 805 (2005).CrossRefGoogle Scholar
72Indris, S., Heitjans, P., J. Non-Cryst. Solids 307, 555 (2002).CrossRefGoogle Scholar
73Wilkening, M., Indris, S., Heitjans, P., Phys. Chem. Chem. Phys. 5, 2225 (2003).CrossRefGoogle Scholar
74Maekawa, H., Fujimaki, Y., Shen, H., Kawamura, J., Yamamura, T., Solid State Ionics 177, 2711 (2006).CrossRefGoogle Scholar
75Liang, C.C., J. Electrochem. Soc. 120, 1289 (1973).CrossRefGoogle Scholar
76Heitjans, P., Schirmer, A., Indris, S., in Diffusion in Condensed Matter–Methods, Materials, Models, Heitjans, P., Kärger, J., Eds. (Springer, Berlin, 2005) pp. 367415.CrossRefGoogle Scholar
77Duer, M.J., Introduction to Solid State NMR Spectroscopy (Blackwell Publishing, Oxford, 2004).Google Scholar
78Heitjans, P., Indris, S., Wilkening, M., Diffus. Fundam. 2, 45 (2005).Google Scholar
79Xu, Z., Stebbins, J.F., Science 270, 1332 (1995).CrossRefGoogle Scholar
80Wagemaker, M., Kentgens, A.P.M., Mulder, F.M., Nature 418, 397 (2002).CrossRefGoogle Scholar
81Qi, F., Jörg, T., Böhmer, R., Solid State Nucl. Magn. Reson. 22, 484 (2002).CrossRefGoogle Scholar
82Qi, F., Rier, C., Böhmer, R., Franke, W., Heitjans, P., Phys. Rev. B 72, 104301 (2005).CrossRefGoogle Scholar
83Stanik, E., Majer, G., Orimo, S., Ichikawa, T., Fujii, H., J. Appl. Phys. 98, 044302 (2005).CrossRefGoogle Scholar
84Brady, S.K., Salazar, I., Baker, D., Browning, D.C., Eastman, J., Conradi, M., Phys. Rev. B 67, 054102 (2003).CrossRefGoogle Scholar
85Corey, R., Ivancic, T., Shane, D., Carl, E., Bowman, R., von Colbe, J., Dornheim, M., Bormann, R., Huot, J., Zidan, R., Stowe, A., Conradi, M., J. Phys. Chem. C 112, 19784 (2008);CrossRefGoogle Scholar
Shane, D., Correy, R., Bowman, R.C., Zidan, R., Stowe, A., Hwang, S.-J., Kim, C., Conradi, M., J. Phys. Chem. C 113, 18414 (2009).CrossRefGoogle Scholar
86Wilkening, M., Amade, R., Iwaniak, W., Heitjans, P., Phys. Chem. Chem. Phys. 9, 1239 (2007).CrossRefGoogle Scholar
87Wilkening, M., Mühle, C., Jansen, M., Heitjans, P., J. Phys. Chem. B 111, 8691 (2007).Google Scholar
88Böhmer, R., Jörg, T., Qi, F., Titze, A., Chem. Phys. Lett. 316, 419 (2000).CrossRefGoogle Scholar
89Qi, F., Diezemann, G., Böhm, H., Lambert, J., Böhmer, R., J. Magn. Res. 169, 225 (2004).CrossRefGoogle Scholar
90Böhmer, R., Qi, F., Solid State Nucl. Magn. Res. 31, 28 (2007).CrossRefGoogle Scholar
91Wilkening, M., Heitjans, P., J. Phys., Condens. Matter 18, 9849 (2006).CrossRefGoogle Scholar
92Wilkening, M., Heitjans, P., Solid State Ionics 177, 3031 (2006).CrossRefGoogle Scholar
93Wilkening, M., Lyness, C., Armstrong, A.R., Bruce, P.G., J. Phys. Chem. C 113, 4741 (2009).CrossRefGoogle Scholar
94Wilkening, M., Gebauer, D., Heitjans, P., J. Phys., Condens. Matter 20, 022201 (2008).CrossRefGoogle Scholar
95Wilkening, M., Kuhn, A., Heitjans, P., Phys. Rev. B 78, 054303 (2008).CrossRefGoogle Scholar
96Faske, S., Eckert, H., Vogel, M., Phys. Rev. B 77, 104301 (2008).CrossRefGoogle Scholar
97Böhmer, R., Jeffrey, K., Vogel, M., Prog. Nucl. Magn. Reson. Spectrosc. 50, 87 (2007).CrossRefGoogle Scholar
98Wilkening, M., Bork, D., Indris, S., Heitjans, P., Phys. Chem. Chem. Phys. 4, 3246 (2002).CrossRefGoogle Scholar
99Heitjans, P., Masoud, M., Feldhoff, A., Wilkening, M., Faraday Discuss. 134, 67 (2007).CrossRefGoogle Scholar
100Siegel, R.W., in Encyclopedia of Applied Physics, Trigg, G.L., Immergut, E.H., Vera, E.S., Greulich, W., Eds. (VCH, New York, 1994), vol. 11, pp. 173200.Google Scholar
101Heitjans, P., Indris, S., J. Mater. Sci. 39, 5091 (2004).CrossRefGoogle Scholar
102Winter, R., Heitjans, P., J. Phys. Chem. B 105, 6108 (2001).CrossRefGoogle Scholar
103Winter, R., Heitjans, P., J. Non-Cryst. Solids 293–295, 19 (2001).CrossRefGoogle Scholar
104Indris, S., Heitjans, P., Roman, H.E., Bunde, A., Defect Diffus. Forum 194–199, 935 (2001).CrossRefGoogle Scholar
105Ruprecht, B., Wilkening, M., Steuernagel, S., Heitjans, P., J. Mater. Chem. 18, 5452 (2008).CrossRefGoogle Scholar
106Ruprecht, B., Wilkening, M., Feldhoff, A., Steuernagel, S., Heitjans, P., Phys. Chem. Chem. Phys. 11, 3071 (2009).CrossRefGoogle Scholar
107Bunde, A., Kantelhardt, J.W., in Diffusion Condensed Matter–Methods, Materials, Models, Heitjans, P., Kärger, J., Eds. (Springer, Berlin, 2005) pp. 895914.CrossRefGoogle Scholar
108Debierre, J.-M., Knauth, P., Albinet, G., Appl. Phys. Lett. 71, 1335 (1997).CrossRefGoogle Scholar
109Knauth, P., Albinet, G., Debierre, J.-M., Ber. Bunsen Ges. Phys. Chem. 102, 945 (1998).CrossRefGoogle Scholar
110Knauth, P., J. Electroceram. 5, 111 (2000).CrossRefGoogle Scholar
111Sata, N., Ebermann, K., Eberl, K., Maier, J., Nature 408, 946 (2000).CrossRefGoogle Scholar
112Bloembergen, N., Purcell, E.M., Pound, R.V., Phys. Rev. 73, 679 (1948).CrossRefGoogle Scholar
113Bunde, A., Dieterich, W., Maass, P., Meyer, M., in Diffusion in Condensed Matter— Methods, Materials, Models, Heitjans, P., J. Kärger, Eds. (Springer, Berlin, 2005) pp. 367415.Google Scholar
114Heitjans, P., Indris, S., Wilkening, M., in Nanocomposites Ionic Conducting Materials and Structural Spectroscopies, Knauth, P., Schoonman, J., Eds. (Springer, Berlin, 2008) pp. 227246.CrossRefGoogle Scholar
115Masoud, M., Heitjans, P., Defect Diffus. Forum 237–240, 1016 (2005).CrossRefGoogle Scholar
116Wilkening, M., Epp, V., Feldhoff, A., Heitjans, P., J. Phys. Chem. C 112, 9291 (2008).CrossRefGoogle Scholar
117Chadwick, A.V., Pooley, M.J., Savin, S.L.P., Phys. Status Solidi C 2, 302 (2005).CrossRefGoogle Scholar
118Maier, J., Solid State Ionics 23, 59 (1987).CrossRefGoogle Scholar