Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T14:55:29.028Z Has data issue: false hasContentIssue false

Ion Beam Deposition

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Ion beam processing of materials has a tradition at Oak Ridge National Laboratory that is as old as the laboratory itself. Consequently, when we began looking for a competitive way to participate in the excitement and new physics beginning to emerge from the fabrication and study of artificially structured materials, it was natural to look for a growth technique that incorporated ion beam processing. Our division, the Solid State Division, has a variety of ion implantation and ion beam analysis accelerators which are integrated with pulsed-laser sources into ultrahigh vacuum (UHV) surface analysis and processing chambers. These facilities allow us to do ion beam and laser processing of materials in UHV at temperatures from liquid helium to several hundred degrees centigrade and to study these alterations in situ by a variety of ion beam (ion scattering, ion channeling, nuclear reactions, etc.) and surface analysis (low energy electron diffraction, Auger, etc.) techniques. Since isotope separation has been done continually at ORNL for almost 45 years, the idea and advantages for altering this technique to do materials fabrication in UHV were immediately obvious. In the following article we will briefly review the history of the ion beam deposition (IBD) concept, describe our preliminary apparatus, and point out the inherent advantages of IBD for fabricating and studying artificially structured materials. Recent results obtained by IBD will be presented.

Type
Advances in Ion Beam Processing and Synthesis
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Love, L.O., Science 182 (1973) p. 343.CrossRefGoogle Scholar
2.Aston, F.W., Philos. Mag. 38/39 (19191925).CrossRefGoogle Scholar
3.Dempster, A.J., Phys. Rev. 11 (1918) p. 316; 18 (1921) p. 415; 20 (1922) p. 631.CrossRefGoogle Scholar
4.Wolter, A.R., in Proceedings 4th Microelectron Symposium, Louis, St., 1965 (IEEE, New York, NY, 1965) p. 2A1.Google Scholar
5.Probyn, B.A., J. Phys. D1 (1968) p. 457.Google Scholar
6.Amano, J., Bryce, P., and Lawson, R.W.P., J. Vac. Sci. Technol. 13 (2), (1976) p. 591.CrossRefGoogle Scholar
7.Amano, J. and Lawson, R.W.P., J. Vac. Sci. Technol. 14(2), (1977) p. 69.CrossRefGoogle Scholar
8.Amano, J. and Lawson, R.W.P., J. Vac. Sci. Technol. 15(1), (1978) p. 118.CrossRefGoogle Scholar
9.Amano, J., Thin Solid Films 92 (1982) p. 115.CrossRefGoogle Scholar
10.Yagi, K., Tamura, S., and Tokyama, T., Jpn. J. Appl. Phys. 16 (1982) p. 245.CrossRefGoogle Scholar
11.Tsukizoe, T., Nakai, T., and Ohmae, N., J. Appl. Phys. 42 (1977) p. 4770.CrossRefGoogle Scholar
12.Tokuyama, T., Yagi, K., Miyake, K., Tamura, M., Natsuaki, N., and Tachi, S., Nucl. Instrum. Methods 182/183 (1981) p. 241.CrossRefGoogle Scholar
13.Thomas, G.E., Beckers, L.J., Vrakking, J.J., and de Koning, B.R., J. Cryst. Growth 56 (1982) p. 557.CrossRefGoogle Scholar
14.Miyake, K. and Tokuyama, T., Thin Solid Films 92 (1982) p. 123.CrossRefGoogle Scholar
15.Zalm, P.C. and Beckers, L.J., Appl. Phys. Lett. 41(2), (1982) p. 167.CrossRefGoogle Scholar
16.Yamada, I., Inokawa, H., and Takage, T., Nucl. Instrum. Methods B 6 (1985) p. 439.CrossRefGoogle Scholar
17.Herbots, N., Appleton, B.R., Noggle, T.S., Zuhr, R.A., and Pennycook, S.J., Nucl. Instrum. Methods 13 (1986) p. 250.CrossRefGoogle Scholar
18.Herbots, N., Appleton, B.R., Pennycook, S.J., Noggle, T.S., and Zuhr, R.A. in Beam-Solid Interactions and Phase Transformations, edited by Kurz, H., Olsen, G.L., and Poate, J.M. (Mater. Res. Soc. Proc. 51, Pittsburgh, PA, 1986) p. 369.Google Scholar
19.Appleton, B.R., Pennycook, S.J., Zuhr, R.A., Herbots, N., and Noggle, T.S., Nucl. Instrum. Methods B (1987) in press.Google Scholar
20.Herbots, N., Appleton, B.R., Noggle, T.S., Pennycook, S.J., Zuhr, R.A., and Zehner, D.M. in Semiconductor-Based Heterostructures, edited by Green, M.L., Baglin, J.E.E., Chin, G.Y., Deckman, H.W., Mayo, W., and Narashinham, D. (The Metallurgical Society, 1986) p. 335.Google Scholar
21.Appleton, B.R., Zuhr, R.A., Noggle, T.S., Herbots, N., and Pennycook, S.J. in Beam-Solid Interactions and Transient Processes, edited by Picraux, S.T., Thompson, M.O., and Williams, J.S. (Mater. Res. Soc. Proc. 74, Pittsburgh, PA, 1987) in press.Google Scholar
22.Hagstrum, H.D., Surf. Sci 54 (1976) p. 197.CrossRefGoogle Scholar
23.Itoh, T., Nakamura, T., Utomachi, M., and Sugiyama, T., Jpn. J. Appl. Phys. 16 (1977) p. 553.CrossRefGoogle Scholar
24.Takagi, T., Yamada, I., and Sasaki, A., Thin Solid Films 45 (1975) p. 569.CrossRefGoogle Scholar
25.Kuiper, A.E.T., Thomas, G.E., and Schanten, W.J., J. Cryst. Growth 51 (1981) p. 17.CrossRefGoogle Scholar
26.Paine, B.M. and Averbach, R.S., Nucl. Instrum. Methods 7/8 (1985) p. 666.CrossRefGoogle Scholar
27.Appleton, B.R. in Ion Implantation and Ion Beam Processing, edited by Williams, J.S. and Poate, J.M. (Academic Press, New York, NY, 1984) p. 189.CrossRefGoogle Scholar
28.Greene, J.E., Crit. Rev. Solid State and Mater. Sci. II (1), (1983) p. 47; see also J.E. Greene in Beam-Solid Interactions and Transient Processes, edited by S.T. Picraux, M.O. Thompson, and J.S. Williams (Mater. Res. Soc. Proc. 74, Pittsburgh, PA, 1987) in press.CrossRefGoogle Scholar
29.Beam, J.C., Science 230 (1985) p. 127, and references therein.Google Scholar
30.Lima, C.A. Ferreira and Howie, A., Philos. Mag. 34 (1976) p. 1057; L.G. Salisbury, J. Microsc. 118 (1979) p. 75.Google Scholar
31.Csepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 49 (1978) p. 3906.CrossRefGoogle Scholar
32.Suni, I., Goltz, G., Nicolet, M-A., and Lau, S.S., Thin Solid Films 93 (1982) p. 171.CrossRefGoogle Scholar
33.Jinno, K., Kinoshida, H., and Matsumato, Y., J. Electrochem. Soc. 125 (1978) p. 827.CrossRefGoogle Scholar
34.Magab, C.J. and Levinstein, H.F., J. Vac. Sci. Technol. 17 (1950) p. 721.CrossRefGoogle Scholar
35.Lee, Y.H. and Chen, M.M., J. Vac. Sci. Technol. 4 (1986) p. 468.CrossRefGoogle Scholar
36.Krause, G.O., Phys. Status Solidi A 3 (1970) p. 907.CrossRefGoogle Scholar
37.Cullis, A.G. and Booker, G.R., J. Cryst. Growth 9 (1971) p. 132.CrossRefGoogle Scholar