Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T20:48:49.687Z Has data issue: false hasContentIssue false

Intrinsically stretchable field-effect transistors

Published online by Cambridge University Press:  02 February 2017

Jiajie Liang
Affiliation:
School of Materials Science and Engineering, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, China; [email protected]
Kwing Tong
Affiliation:
Department of Materials Sciences and Engineering, Henry Samuli School of Engineering and Applied Science, University of California, Los Angeles, USA; [email protected]
Huibin Sun
Affiliation:
Department of Materials Sciences and Engineering, Henry Samuli School of Engineering and Applied Science, University of California, Los Angeles, USA; [email protected]
Qibing Pei
Affiliation:
University of California, Los Angeles, USA; [email protected]
Get access

Abstract

A thin-film field-effect transistor (TFT) is a three-terminal device comprising source, drain, and gate electrodes, a dielectric layer, a semiconductor layer, and a substrate. The TFT is a fundamental building component in a variety of electronic devices. Developing an intrinsically stretchable TFT entails availability and usage of a functional material with elastomeric deformability in response to an externally applied stress. This represents a major materials challenge. In this article, we survey strategies to synthesize these elastomeric functional materials, and how these materials are assembled to fabricate intrinsically stretchable TFT devices. Developing solution-based printing technology to assemble intrinsically stretchable TFTs is considered a prospective strategy for wearable electronics for industrial adaptation in the near future.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vosgueritchian, M., Tok, J.B.-H., Bao, Z., Nat. Photonics 7, 769 (2013).Google Scholar
Liang, J., Li, L., Chen, D., Hajagos, T., Ren, Z., Chou, S., Hu, W., Pei, Q., Nat. Commun. 6, 7647 (2015).Google Scholar
Kim, D.H., Xiao, J., Song, J., Huang, Y., Rogers, J.A., Adv. Mater. 22, 2108 (2010).CrossRefGoogle Scholar
Rogers, J.A., Someya, T., Huang, Y., Science 327, 1603 (2010).Google Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., Someya, T., Nature 499, 458 (2013).CrossRefGoogle Scholar
Kim, D.-H., Song, J., Choi, W.M., Kim, H.-S., Kim, R.-H., Liu, Z., Huang, Y.Y., Hwang, K.-C., Zhang, Y.W., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 105, 18675 (2008).Google Scholar
Chortos, A., Lim, J., To, J.W.F., Vosgueritchian, M., Dusseault, T.J., Kim, T.H., Hwang, S., Bao, Z.N., Adv. Mater. 26, 4253 (2014).Google Scholar
Chae, S.H., Yu, W.J., Bae, J.J., Duong, D.L., Perello, D., Jeong, H.Y., Ta, Q.H., Ly, T.H., Vu, Q.A., Yun, M., Duan, X.F., Lee, Y.H., Nat. Mater. 12, 403 (2013).Google Scholar
Lee, S.-K., Kim, B.J., Jang, H., Yoon, S.C., Lee, C., Hong, B.H., Rogers, J.A., Cho, J.H., Ahn, J.-H., Nano Lett. 11, 4642 (2011).Google Scholar
Pu, J., Zhang, Y., Wada, Y., Wang, J., Li, L.J., Iwasa, Y., Takenobu, T., Appl. Phys. Lett. 103, 023505 (2013).Google Scholar
Rao, Y.-L., Chortos, A., Pfattner, R., Lissel, F., Chiu, Y.C., Feig, V., Xu, J., Kurosawa, T., Gu, X.D., Wang, C., He, M., Chung, J.W., Bao, Z.N., J. Am. Chem. Soc. 138, 6020 (2016).Google Scholar
Shin, M., Song, J.H., Lim, G.H., Lim, B., Park, J.J., Jeong, U., Adv. Mater. 26, 3706 (2014).CrossRefGoogle Scholar
Liang, J., Tong, K., Pei, Q.A., Adv. Mater. 28, 5986 (2016).Google Scholar
McCoul, D., Hu, W., Gao, M., Mehta, V., Pei, Q., Adv. Electron. Mater. 2, 1500407 (2016).Google Scholar
Chen, D., Liang, J., Pei, Q., Sci. China Chem. 59, 659 (2016).Google Scholar
Xu, F., Wu, M.Y., Safron, N.S., Roy, S.S., Jacobberger, R.M., Bindl, D.J., Seo, J.H., Chang, T.H., Ma, Z., Arnold, M.S., Nano Lett. 14, 682 (2014).Google Scholar
Kong, D., Pfattner, R., Chortos, A., Lu, C., Hinckley, A.C., Wang, C., Lee, W.-Y., Chung, J.W., Bao, Z., Adv. Funct. Mater. 26, 4680 (2016).Google Scholar
Liu, H., Zhang, L., Yang, D., Ning, N., Yu, Y., Yao, L., Yan, B., Tian, M., J. Phys. D Appl. Phys. 45, 485303 (2012).Google Scholar
Mali, C., Chavan, S., Kanse, K., Kumbharkhane, A., Mehrotra, S., Indian J. Pure Appl. Phys. 45, 476 (2007).Google Scholar
O’Connor, B., Chan, E.P., Chan, C., Conrad, B.R., Richter, L.J., Kline, R.J., Heeney, M., McCulloch, I., Soles, C.L., DeLongchamp, D.M., ACS Nano 4, 7538 (2010).Google Scholar
Savagatrup, S., Printz, A.D., O’Connor, T.F., Zaretski, A.V., Lipomi, D.J., Chem. Mater. 26, 3028 (2014).CrossRefGoogle Scholar