Article contents
Interfaces Part II: Mechanical and High-Temperature Behavior
Published online by Cambridge University Press: 29 November 2013
Extract
This is the second of two issues of the MRS BULLETIN on interface materials and is entirely devoted to their mechanical and high-temperature behavior. Mechanical properties provide a rich area for investigating the effect of the local inhomogeneities near the interfaces, and their effect on the interrelation between the structure and chemistry on one hand, and the elastic and fracture behavior on the other.
Based on much experimental work on grain-boundary fracture it seems that, with the exception of “beneficial” segregants, the embrittlement potential of most impurities is governed by their propensity for segregation to the grain boundaries, which in turn is strongly influenced by the energies of the pure boundaries. To investigate the role of the grain-boundary structure in its fracture behavior, one must therefore consider the correlations between (1) the structure (i.e., the five macroscopic degrees of freedom) and the energy of pure grain boundaries, (2) impurity segregation and the grain boundary energy, (3) structure, impurity segregation and elastic response at the interface, and finally (4) the correlation between embrittlement and segregation. In addition, the mobility of dislocations near a crack tip also plays an important role. Unfortunately, relatively little knowledge has been accumulated on most of these complex interrelations even though their unraveling is widely recognized as the ultimate goal.
- Type
- Interfaces Part II
- Information
- Copyright
- Copyright © Materials Research Society 1990
References
- 1
- Cited by