Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T13:21:16.977Z Has data issue: false hasContentIssue false

The Influence of Order on the Nucleation Barrier

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

While it is conventionally thought that liquids turn to solids at their “freezing” point, it is often the case that materials must be supercooled (cooled below the freezing temperature) before nucleation actually happens. There is growing evidence that coupled processes, including chemical–structural ordering and orientational–translational ordering, are among the factors that affect exactly when and how nucleation occurs in liquids and crystals. Recent density functional calculations have demonstrated that such coupled routes, which are not incorporated within the one-dimensional framework of the classical theory, can dramatically influence the overall nucleation process. Here, some recently observed cases in metal alloys are discussed, establishing a relationship between developing order in undercooled liquids and the nucleation barrier, the influence of magnetic ordering on nucleation in Co-based melts, and the role of interfacial structure and chemistry on the catalytic efficiency of inoculants for heterogeneous nucleation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Fahrenheit, D.B., Philos. Trans. Roy. Soc. London 33 (1724) p.78.Google Scholar
2Turnbull, D. and Cech, R.E., J. Appl. Phys. 21 (1950) p.804.Google Scholar
3Turnbull, D., J.Chem. Phys. 20 (1952) p.411.Google Scholar
4Kelton, K.F., in Solid State Physics, Vol.45, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Boston, 1991) p.75.Google Scholar
5Kelton, K.F., Acta Mater. 48 (2000) p.1967.Google Scholar
6Kelton, K.F., J. Non-Cryst. Solids 274 (2000) p.147.Google Scholar
7Herlach, D.M., Cochrane, R.F., Egry, I., Fecht, H.J., and Greer, A.L., Int. Mater. Rev. 38 (1993) p.273.Google Scholar
8Herlach, D.M., Annu. Rev. Mater. Sci. 21 (1991) p.23.CrossRefGoogle Scholar
9Rhim, W.-K., Chung, S.K., Barber, D., Man, K.F., Gutt, G., Rulison, A.J., and Spjut, R.E., Rev. Sci. Instrum. 64 (1993) p.2961.Google Scholar
10Rulison, A.J., Watkins, J.L., and Zambrano, B., Rev. Sci. Instrum. 68 (1997) p.2853.CrossRefGoogle Scholar
11Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., and Herlach, D.M., Phys. Rev. Lett. 89 075507 (2002).Google Scholar
12Holland-Moritz, D., Schenk, T., Bellissent, R., Simonet, V., Funakoshi, K., Merino, J.M., Buslaps, T., and Reutzel, S., J. Non-Cryst. Solids 312–314 (2002) p.47.CrossRefGoogle Scholar
13Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T., Rogers, J., Robinson, M.B., and Robinson, D., Phys. Rev. Lett. 90 195504 (2003).Google Scholar
14Nothoff, C., Franz, H., Hanfland, M., Herlach, D.M., Holland-Moritz, D., and Petry, W., Rev. Sci. Instrum. 71 (2000) p.3791.CrossRefGoogle Scholar
15Nothoff, C., Feuerbacher, B., Franz, H., Herlach, D.M., and Holland-Moritz, D., Phys. Rev. Lett. 86 (2001) p.1038.Google Scholar
16Frank, F.C., Proc. Royal Soc. London, A 215 (1952) p.43.Google Scholar
17Sachdev, S. and Nelson, D.R., Phys. Rev. Lett. 53 (1984) p.1947.CrossRefGoogle Scholar
18Jakse, N. and Pasturel, A., Phys. Rev. Lett. 91 195501 (2003).Google Scholar
19Lee, G.W., Gangopadhyay, A.K., Kelton, K.F., Hyers, R.W., Rathz, T.J., Rogers, J.R., and Robinson, D., Phys. Rev. Lett. 93 37802 (2004).Google Scholar
20Cicco, A. Di, Trapananti, A., Faggioni, S., and Filipponi, A., Phys. Rev. Lett. 91 135505 (2003).Google Scholar
21Hennig, R.G., Mihalkovic, M., Kelton, K.F., and Henley, C.L., Phys. Rev. B. 67 134202 (2003).CrossRefGoogle Scholar
22Schenk, T., Simonet, V., Holland-Moritz, D., Bellissent, R., Hansen, T., Convert, P., and Herlach, D.M., Europhys. Lett. 65 (2004) p.34.Google Scholar
23Spaepen, F., Acta Metall. 23 (1975) p.729.Google Scholar
24Spaepen, F. and Meyer, R.B., Scripta Metall. 10 (1976) p.257.CrossRefGoogle Scholar
25Holland-Moritz, D., Int. J. Non-Equilib. Process. 11 (1998) p.169.Google Scholar
26Platzek, D., Nothoff, C., Herlach, D.M., Jacobs, G., and Maier, K., Appl. Phys. Lett. 65 (1994) p.1723.Google Scholar
27Reske, J., Herlach, D.M., Keuser, F., Maier, K., and Platzek, D., Phys. Rev. Lett. 75 (1995) p. 737.Google Scholar
28Herlach, D., Bührer, C., Herlach, D.M., Maier, K., Nothoff, C., Platzek, D., and Reske, J., Europhys. Lett. 44 (1998) p.98.Google Scholar
29Herlach, D.M., Holland-Moritz, D., Schenk, T., Schneider, K., Wilde, G., Boni, O., Fransaer, J., and Spaepen, F., J. Non-Cryst. Solids 250–252 (1999) p.271.Google Scholar
30Schenk, T., Holland-Moritz, D., and Herlach, D.M., Europhys. Lett. 50 (2000) p.402.Google Scholar
31Albrecht, T., Bührer, C., Fgähnle, M., Maier, K., Platzek, D., and Reske, J., Appl. Phys. A. 65 (1997) p.215.Google Scholar
32Schade, J., McLean, A., and Miller, W.A., in Undercooled Alloy Phases, edited by Collings, E.W. and Koch, C.C. (Metallurgical Society of AIME, Warrendale, PA, 1986) p.233.Google Scholar
33Volkmann, T., Wilde, G., Willnecker, R., and Herlach, D.M., J.Appl. Phys. 83 (1998) p.3028.Google Scholar
34Holland-Moritz, D. and Spaepen, F., Philos. Mag. 84 (2004) p.957.Google Scholar
35Willnecker, R., Herlach, D.M., and Feuer-bacher, B., Mat. Sci. Eng. 98 (1998) p.85.Google Scholar
36Cech, R.E. and Turnbull, D., J. Metals 191 (1951) p.242.Google Scholar
37Greer, A.L., Bunn, A.M., Tronche, A., Evans, P.V., and Bristow, D.J., Acta Mater. 48 (2000) p. 2823.Google Scholar
38Zachariassen, K.E. and Kristiansen, E., Cryobiol. 41 (2000) p.257.Google Scholar
39Christian, J.W., The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1975) p.448.Google Scholar
40Kim, W.T. and Cantor, B., Acta Metall. Mater. 42 (1994) p.3115.Google Scholar
41Schleip, E., Herlach, D.M., and Feuerbacher, B., Europhys. Lett. 11 (1990) p.751.Google Scholar
42Jones, G.P., in Solidification Processing, edited by Beech, J. and Jones, H. (Institute of Metals, London, 1987) p.496.Google Scholar
43Johnson, E., Science 296 (2002) p.497.Google Scholar
44Donnelly, S.E., Birtcher, R.C., Allen, C.W., Morrison, I., Furuya, K., Song, M., Mitsuishi, K., and Dahmen, U., Science 296 (2002) p.507.CrossRefGoogle Scholar
45Schumacher, P. and Greer, A.L., in Light Metals, edited by Hale, W. (The Minerals, Metals and Materials Society, Warrendale, PA, 1996) p.745.Google Scholar
46Greer, A.L., Cooper, P.S., Meredith, M.W., Schneider, W., Schumacher, P., Spittle, J.A., and Tronche, A., Adv. Eng. Mater. 5 (2003) p.81.Google Scholar
47Oxtoby, D.W., J. Phys.: Condens. Matter. 4 (1992) p.7627.Google Scholar
48Oxtoby, D.W., Philos. Trans. R. Soc. London, Ser. A 361 (2003) p.419.Google Scholar