Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T17:36:24.629Z Has data issue: false hasContentIssue false

Influence of adherend properties on the strength of adhesively bonded joints

Published online by Cambridge University Press:  05 August 2019

Mariana D. Banea*
Affiliation:
Federal Center for Technological Education of Rio de Janeiro, Brazil; [email protected]
Get access

Abstract

Advanced lightweight materials, including high-strength steels, aluminum, magnesium, plastics, and reinforced polymer composites, are increasingly used in industry. Combinations of mixed materials are becoming commonplace in the design of structures. Adhesives can be used to join a wide range and combinations of materials. However, joining of materials depends on their specific characteristics. The choice of adherend material is one particular and important parameter that influences adhesively bonded joint performance, and its effect should be taken into consideration in the design of adhesive joints. This article overviews experimental and modeling investigations on the influence of adherend properties on the strength of adhesively bonded joints.

Type
Joining of Dissimilar Lightweight Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banea, M.D., da Silva, L.F.M., Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 223, 1 (2009).Google Scholar
Banea, M.D., da Silva, L.F.M., Campilho, R.D.S.G., in Joining of Polymer-Metal Hybrid Structures: Principles and Applications (Wiley, Hoboken, NJ, 2018), pp. 327.Google Scholar
Budhe, S., Banea, M.D., de Barros, S., da Silva, L.F.M., Int. J. Adhes. Adhes. 72, 30 (2017).CrossRefGoogle Scholar
Banea, M.D., Da Silva, L.F.M., Campilho, R.D.S.G., Sato, C., J. Adhes. 90, 16 (2014).CrossRefGoogle Scholar
Volkersen, O., Luftfahrtforschung 15, 41 (1938).Google Scholar
da Silva, L.F.M., Carbas, R.J.C., Banea, M.D., in Handbook of Adhesion Technology: 2nd ed. (2018), vol. 1–2, pp. 489521.CrossRefGoogle Scholar
Kafkalidis, M.S., Thouless, M.D., Int. J. Solids Struct. 39, 4367 (2002).CrossRefGoogle Scholar
Karachalios, E.F., Adams, R.D., da Silva, L.F.M., Int. J. Adhes. Adhes. 43, 81 (2013).CrossRefGoogle Scholar
Karachalios, E.F., Adams, R.D., da Silva, L.F.M., Int. J. Adhes. Adhes. 43, 96 (2013).CrossRefGoogle Scholar
da Silva, L.F.M., Carbas, R.J.C., Critchlow, G.W., Figueiredo, M.A.V., Brown, K., Int. J. Adhes. Adhes. 29, 621 (2009).CrossRefGoogle Scholar
Reis, P.N.B., Ferreira, J.A.M., Antunes, F., Int. J. Adhes. Adhes. 31, 193 (2011).CrossRefGoogle Scholar
Banea, M.D., da Silva, L.F.M., Carbas, R., Campilho, R.D.S.G., J. Adhes. Sci. Technol. 31, 663 (2017).CrossRefGoogle Scholar
Owens, J.F.P., Lee-Sullivan, P., Int. J. Adhes. Adhes. 20, 47 (2000).CrossRefGoogle Scholar
Anyfantis, K.N., Tsouvalis, N.G., Compos. Struct. 96, 850 (2013).CrossRefGoogle Scholar
Di Franco, G., Fratini, L., Pasta, A., Int. J. Adhes. Adhes. 41, 24 (2013).CrossRefGoogle Scholar
Marannano, G., Zuccarello, B., Compos. Part B Eng. 71, 28 (2015).CrossRefGoogle Scholar
Korta, J., Mlyniec, A., Uhl, T., Compos. Part B Eng. 79, 621 (2015).CrossRefGoogle Scholar
Ozel, A., Yazici, B., Akpinar, S., Aydin, M.D., Temiz, Ş., Compos. B Eng. 62, 167 (2014).CrossRefGoogle Scholar
Owens, J.F.P., Lee-Sullivan, P., Int. J. Adhes. Adhes. 20, 39 (2000).CrossRefGoogle Scholar
Seong, M.S., Kim, T.H., Nguyen, K.H., Kweon, J.H., Choi, J.H., Compos. Struct. 86, 135 (2008).CrossRefGoogle Scholar
Campilho, R.D.S.G., da Silva, L.F.M., Banea, M.D., in Joining of Polymer-Metal Hybrid Structures: Principles and Applications (Wiley, Hoboken, NJ, 2018), pp. 2959.Google Scholar
Ribeiro, T.E.A., Campilho, R.D.S.G., da Silva, L.F.M., Goglio, L., Compos. Struct. 136, 25 (2016).CrossRefGoogle Scholar
Shahin, K., Taheri, F., Int. J. Solids Struct. 45, 6284 (2008).CrossRefGoogle Scholar
Yang, X., Yao, L., Xia, Y., Zhou, Q., Int. J. Adhes. Adhes. 51, 42 (2014).CrossRefGoogle Scholar
Zhang, F., Wang, H.P., Hicks, C., Yang, X., Carlson, B.E., Zhou, Q., Int. J. Adhes. Adhes. 43, 14 (2013).CrossRefGoogle Scholar
Zhao, K., Xu, L.R., J. Adhes. 91, 978 (2015).CrossRefGoogle Scholar
Arenas, J.M., Alía, C., Narbón, J.J., Ocaña, R., González, C., Compos. B Eng. 44, 417 (2013).CrossRefGoogle Scholar
Machado, J.J.M., Nunes, P.D.P., Marques, E.A.S., da Silva, L.F.M., Compos. B Eng. 158, 102 (2019).CrossRefGoogle Scholar
Rudawska, A., Int. J. Adhes. Adhes. 30, 574 (2010).CrossRefGoogle Scholar
Avendaño, R., Carbas, R.J.C., Marques, E.A.S., da Silva, L.F.M., Fernandes, A.A., Compos. Struct. 152, 34 (2016).CrossRefGoogle Scholar
Banea, M.D., Rosioara, M., Carbas, R.J.C., da Silva, L.F.M., Compos. B Eng. 151, 71 (2018).CrossRefGoogle Scholar
Banea, M.D., Da Silva, L.F.M., Campilho, R., J. Adhes. 91, 331 (2015).CrossRefGoogle Scholar
Banea, M.D., Da Silva, L.F.M., Materwiss. Werksttech. 41, 325 (2010).CrossRefGoogle Scholar
Banea, M.D., da Silva, L.F.M., J. Adhes. 85, 261 (2009).CrossRefGoogle Scholar
da Silva, L.F.M., Rodrigues, T.N.S.S., Figueiredo, M.A.V., de Moura, M.F.S.F., Chousal, J.A.G., J. Adhes. 82, 1091 (2006).CrossRefGoogle Scholar
Gleich, D.M., Van Tooren, M.L., Beukers, A., J. Adhes. Sci. Technol. 15, 1091 (2001).CrossRefGoogle Scholar
Banea, M.D., Da Silva, L.F.M., Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 224, 51 (2010).Google Scholar
Neto, J.A.B.P., Campilho, R.D.S.G., Da Silva, L.F.M., Int. J. Adhes. Adhes. 37, 96 (2012).CrossRefGoogle Scholar
Banea, M.D., in Material Modelling: Applications, Challenges and Research (Nova Science Publishers, New York, 2017), pp. 4969.Google Scholar
Fernandes, T.A.B., Campilho, R.D.S.G., Banea, M.D., Da Silva, L.F.M., J. Adhes. 91, 841 (2015).CrossRefGoogle Scholar