Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:35:26.402Z Has data issue: false hasContentIssue false

In Situ X-Ray Tomography Studies of Microstructural Evolution Combined with 3D Modeling

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Synchrotron x-ray microtomography is a characterization technique increasingly used to obtain 3D images of the interior of optically opaque materials with a spatial resolution in the micrometer range. As a nondestructive technique, it enables the monitoring of microstructural evolution during in situ experiments. In this article, examples from three different fields of metals research illustrate the contribution of x-ray tomography data to modeling: deformation of cellular materials, metal solidification, and fatigue crack growth in Al alloys. Conventionally, tomography probes the 3D distribution of the x-ray attenuation coefficient within a sample. However, this technique is also being extended to determine the local crystallographic orientation in the bulk of materials (diffraction contrast tomography), a key issue for the modeling of microstructure in metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Buffière, J.-Y., Maire, E., Cloetens, P., Lormand, G., Fougeres, R., Acta Mater. 47, 1613 (1999).CrossRefGoogle Scholar
2.Martin, C.F., Josserond, C., Salvo, L., Blandin, J.J., Cloetens, P., Boller, E., Scripta Mater. 42, 375 (2000).CrossRefGoogle Scholar
3.Radon, J., Ber. Verb. Sächs. Akad. Wiss. Leipzig, Math.–Naturwiss. Kl. 69, 262 (1917).Google Scholar
4.Cormack, A.M., J. Appl. Phys. 34, 2722 (1963).CrossRefGoogle Scholar
5.Hounsfield, G.N., Br. J. Radiol. 46, 1016 (1973).CrossRefGoogle Scholar
6.Flannery, B.P., Deckman, H.W., Roberge, W.G., Amico, K.L.D., Science 237, 1439 (1987).CrossRefGoogle Scholar
7.Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J.J., Buffière, J.Y., Ludwig, W., Boller, E., Bellet, D., Josserond, C., Nucl. Instrum. Methods Phys. Res. B 200, 273 (2003).CrossRefGoogle Scholar
8.Maire, E., Buffière, J.Y., Salvo, L., Blandin, J.J., Ludwig, W., Letang, J.M., Adv. Eng. Mater. 3, 539 (2001).3.0.CO;2-6>CrossRefGoogle Scholar
9.Schroer, C.G., Cloetens, P., Rivers, M., Snigirev, A., Takeuchi, A., Yun, W.B., MRS Bull. 29, 157 (2004).CrossRefGoogle Scholar
10.Banhart, J., ed., Advanced Tomographic Methods in Materials Research and Engineering, (Oxford University Press, Oxford, UK, 2008).CrossRefGoogle Scholar
12.Sakellariou, A., Sawkinsa, T.J., Sendena, T.J., Limaye, A., Physica A 339, 152 (2004).CrossRefGoogle Scholar
13.Masschaele, B.C., Cnudde, V., Dierick, M., Jacobs, P., Van Hoorebeke, L., Vlassenbroeck, J., Nucl. Instrum. Methods Phys. Res., Sect. A 580, 266 (2007).CrossRefGoogle Scholar
14.Toda, H., Uesugi, K., Takeuchi, A., Minami, K., Kobayashi, M., Kobayashi, T., Appl. Phys. Lett. 89, 143112 (2006).CrossRefGoogle Scholar
15.Mokso, R., Cloetens, P., Maire, E., Ludwig, W., Buffière, J.Y., Appl. Phys. Lett. 90, 144104 (2007).CrossRefGoogle Scholar
16.Rowenhorst, D.J., Gupta, A., Feng, C.R., Spanos, G., Scripta Mater. 55, 11 (2006).CrossRefGoogle Scholar
17.Saylor, D.M., Fridy, J., El-Dasher, B.S., Young, K.Y., Rollett, A.D., Metall. Trans. A 35, 1969 (2004).CrossRefGoogle Scholar
18.Rollett, A.D., Lee, S.B., Campman, R., Rohrer, G.S.Annu. Rev. Mater. Res. 37, 627 (2007).CrossRefGoogle Scholar
19.Uchic, M.D., Groeber, M.A., Dimiduk, D.M., Simmons, J.P., Scripta Mater. 55, 23 (2006).CrossRefGoogle Scholar
20.Parisot, R., Forest, S., Pineau, A., Nguyen, F., Demonet, X., Mataigne, J.-M., Metall. Mater. Trans. A 35, 797 (2004).CrossRefGoogle Scholar
21.Lewis, A.C., Bingert, J.F., Rowenhorst, D.J., Gupta, A., Geltmacher, A.B., Spanos, G., Mater. Sci. Eng. A 418, 11 (2006).CrossRefGoogle Scholar
22.Kammer, D., Mendoza, R., Voorhees, P.W., Scripta Mater. 55, 17 (2006).CrossRefGoogle Scholar
23.Kinney, J.H., Nichols, M.C., Annu. Rev. Mater. Sci. 22, 121 (1992).CrossRefGoogle Scholar
24.Nielsen, S.F., Poulsen, H.F., Beckman, F., Thorning, C., Wert, J.A., Acta Mater. 59, 437 (2003).Google Scholar
25.Qian, L., Toda, H., Uesugi, K., Kobayashi, T., Ohgaki, T., Kobayashi, M., Appl. Phys. Lett. 87, 241907 (2005).CrossRefGoogle Scholar
26.De Carlo, F., Xiao, X.H., Tieman, B., Proc. SPIE: Int. Soc. Opt. Eng. 6318, K3180 (2006).Google Scholar
27.Connolly, B.J., Homer, D.A., Fox, S.J., Davenport, A.J., Padovani, C., Zhou, S., Turnbull, A., Preuss, M., Stevens, N.P., Marrow, T.J., Buffière, J.Y., Boller, E., Groso, A., Stampanoni, M., Mater. Sci. Technol. 22, 1076 (2006).CrossRefGoogle Scholar
28.Beckmann, F., Grupp, R., Haibel, A., Huppmann, M., Nöthe, M., Pyzalla, A., Reimers, W., Schreyer, A., Zettler, R., Adv. Eng. Mater. 9, 939 (2007).CrossRefGoogle Scholar
29.Ludwig, O., DiMichiel, M., Salvo, L., Suéry, M., Falus, P., Metall. Trans. A 36, 1515 (2005).CrossRefGoogle Scholar
30.Ludwig, W., Buffière, J.-Y., Savelli, S., Cloetens, P., Acta Mater. 51, 585 (2003).CrossRefGoogle Scholar
31.Kak, A.C., Slaney, M., Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001).CrossRefGoogle Scholar
32.Labiche, J.C., Mathon, O., Pascarelli, S., Newton, M.A., Guilera Ferre, G., Curfs, C., Vaughan, G., Homs, A., Fernandez Carreiras, D., Rev. Sci. Instrum. 78, 091301 (2007).CrossRefGoogle Scholar
33.Cloetens, P., Pateyron-Salome, M., Buffière, J.-Y., Peix, G., Baruchel, J., Peyrin, F., Sclenker, M., J. Appl. Phys. 81, 5878 (1997).CrossRefGoogle Scholar
34.Gibson, L., Ashby, M., Cellular Solids, Structure and Properties (Pergamon Press, Oxford, UK, 1988).Google Scholar
35.Roberts, A.P., Garboczi, E.J., Acta Mater. 49, 189 (2001).CrossRefGoogle Scholar
36.Ulrich, D., Van Rietbergen, B., Weinans, H., Ruegsegger, P., J. Biomech. 31, 1187 (1998).CrossRefGoogle Scholar
37.Maire, E., Fazekas, A., Salvo, L., Dendievel, R., Youssef, S., Cloetens, P., Letang, J.M., Compos. Sci. Technol. 63, 2431 (2003).CrossRefGoogle Scholar
38.Borbély, A., Kenesei, P., Biermann, H., Acta Mater. 54, 2735 (2006).CrossRefGoogle Scholar
39.Jancek, R., Kottar, A., Kriszt, B., Degischer, H.P., in Proc. Symp. Cell. Met. Polym. (Trans Tech Publications, 2005), pp. 107.Google Scholar
40.Youssef, S., Maire, E., Gaertner, R., Acta Mater. 53, 719 (2005).CrossRefGoogle Scholar
41.Madi, K., Forest, S., Boussuge, M., Gailliègue, S., Lataste, E., Buffière, J.-Y., Bernard, D., Jeulin, D., Comput. Mater. Sci. 39, 224 (2007).CrossRefGoogle Scholar
42.Elliott, J.A., Windle, A.H., Hobdel, J.R., Eeckhaut, G., Oldman, R.J., Ludwig, W., Boller, E., Cloetens, P., Baruchel, J., J. Mater. Sci. 37, 1547 (2002).CrossRefGoogle Scholar
43.Onck, P.R., van Merkerk, R., De Hosson, J.T.M., Schmidt, I., Adv. Eng. Mater. 6, 6 (2004).CrossRefGoogle Scholar
44.Maire, E., Gimenez, N., Sauvant-Moynot, V., Sauterau, H., Philos. Trans. 364, 69 (2006).Google Scholar
45.Liang, Z., Ioannidis, M.A., Chatzis, I., J. Colloid Interface Sci. 221, 13, (2000).CrossRefGoogle Scholar
46.Spowart, J.E., Scripta Mater. 55, 5 (2006).CrossRefGoogle Scholar
47.Ito, Y., Flemings, M.C., Cornie, J.A., in Nature and Properties of Semi-Solid Materials, Sekhar, J.A., Dantzig, J., eds. (TMS, Warrendale, PA, 1992), pp. 317.Google Scholar
48.Niroumand, B., Xia, K., Mater. Sci. Eng. A283, 70 (2000).CrossRefGoogle Scholar
49.Alkemper, J., Voorhees, P.W., Acta Mater. 49, 897 (2001).CrossRefGoogle Scholar
50.Alkemper, J., Mendoza, R., Voorhees, P.W., Adv. Eng. Mater. 4, 694 (2002).3.0.CO;2-M>CrossRefGoogle Scholar
51.Mendoza, R., Alkemper, J., Voorhees, P.W., Metall. Trans. A 34, 481 (2003).CrossRefGoogle Scholar
52.Kammer, D., Voorhees, P.W., Acta Mater. 54 (6), 1549 (2006).CrossRefGoogle Scholar
53.Rowenhorst, D.J., Kuang, J.P., Thornton, K., Voorhees, P.W., Acta Mater. 54, 2027 (2006).CrossRefGoogle Scholar
54.Verrier, S., Braccini, M., Josserond, C., Salvo, L., Suéry, M., Cloetens, P., Ludwig, W., in Proc. 6th Intl. Conf. on Semi-Solid Processing of Alloys and Composites, Chiarmetta, G.L., Rosso, M., Eds. (Edimet Spa, Brescia, 2000), pp. 771.Google Scholar
55.Zabler, S., Rueda, A., Rack, A., Riesemeier, H., Zaslansky, P., Manke, I., Garcia-Moreno, F., Banhart, J., Acta Mater. 55 (15), 5045 (2007).CrossRefGoogle Scholar
56.Salvo, L., Suéry, M., Josserond, C., Cloetens, P., Nielsen, O., Proc. 7th Int. Conf. on Advanced Semisolid Processing of Alloys and Composites, Tsutsui, Y., Kiuchi, M., Ichikawa, K., Eds. (2002), pp. 403.Google Scholar
57.Zabler, S., Haibel, A., Lohmüller, A., Banhard, J., Rueda, A., Rack, A., Riesemeier, H., Goebbels, J., Wolk, T., Weidemann, G., 9th European Conference on NDT, Berlin, Germany, September 2006, We.1.5.2, pp. 17.Google Scholar
58.Pompe, O., Rettenmayr, M., J. Cryst. Growth 192, 300 (1998).CrossRefGoogle Scholar
59.Mokso, R., PhD dissertation, Université Joseph Fourier, Grenoble, France 2006.Google Scholar
60.Di Michiel, M., Merino, J.M., Fernandez-Carreiras, D., Buslaps, T., Honkimaki, V., Falus, P., Martins, T., Svensson, O., Rev. Sci. Instrum. 76, 043702, (2005).CrossRefGoogle Scholar
61.Ludwig, O., DiMichiel, M., Falus, P., Salvo, L., Suéry, M., presented at the 8th S2P Conf. on Semisolid Processing of Alloys and Composites, Limassol, Cyprus, 21–23 September 2004 (NADCA, USA).Google Scholar
62.Limodin, N., Salvo, L., Suery, M., DiMichiel, M., Acta Mater. 55, 3177 (2007).CrossRefGoogle Scholar
63.Limodin, N., Boller, E., Salvo, L., Suéry, M., DiMichiel, M., Proc. 5th Decennial Int. Conf. on Solidification Processing, Jones, H., Ed. (University of Sheffield, UK, 23–25 June 2007), p. 316.Google Scholar
64.Chen, M., Kattamis, T.Z., Mater. Sci. Eng. A 247, 239 (1998).CrossRefGoogle Scholar
65.Ganesan, S., Chan, C.L., Poirier, D.R., Mater. Sci. Eng. 151, 97 (1992).CrossRefGoogle Scholar
66.McCarthy, J.F., Acta Mater. 42, 1573 (1994).CrossRefGoogle Scholar
67.Bhat, M.S., Poirier, D.R., Heinrich, J.C., Metall. Mater. Trans. B 26, 1049 (1995).CrossRefGoogle Scholar
68.Goyeau, B., Benihaddadene, T., Gobin, D., Quintard, M., in Modeling of Casting, Welding and Advanced Solidification Processes VIII, Thomas, B.G., Beckermann, C., eds. (TMS, Warrendale, PA, 1998), p. 353.Google Scholar
69.Brown, S.G.R., Spittle, J.A., Jarvis, D.J., Walden-Bevan, R., Acta Mater. 50, 1559 (2002).CrossRefGoogle Scholar
70.Bernard, D., Nielsen, O., Salvo, L., Cloetens, P., Mater. Sci. Eng. A 392, 112 (2005).CrossRefGoogle Scholar
71.Nielsen, Ø., Arnberg, L., Mo, A., Thevik, H., Metall. Mater. Trans. A 30, 2455 (1999).CrossRefGoogle Scholar
72.Fuloria, D., Lee, P.D., Bernard, D., Proc. 5th Decennial Int. Conf. on Solidification Processing, Jones, H., Ed. (University of Sheffield, UK, 23–25 June 2007), p. 685.Google Scholar
73.Miller, K.J. Fat. Frac. Eng. Mat. Struct. 10 75 (1987).Google Scholar
74.Ferrie, E., Buffière, J.-Y., Ludwig, W., Gravouil, A., Edwards, L., Acta Mater. 54, 1111 (2006).CrossRefGoogle Scholar
75.Guvenilir, A., Breunig, T.M., Kinney, J.H., Stock, S.R., Acta Mater. 45, 1977 (1997).CrossRefGoogle Scholar
76.Buffière, J.-Y., Ferrie, E., Proudhon, H., Ludwig, W., Mater. Sci. Technol. 22, 1019 (2006).CrossRefGoogle Scholar
77.Toda, H., Sinclair, I., Buffière, J.-Y., Maire, E., Khor, K.H., Gregson, P., Kobayashi, T., Acta Mater. 52, 1305 (2004).CrossRefGoogle Scholar
78.Ignatiev, K.I., Lee, W.K., Fezzaa, K., Stock, S.R., Philos. Mag. 85, 3273 (2005).CrossRefGoogle Scholar
79.Withers, P.J., Bennett, J., Hung, Y.-C., Preuss, M., Mater. Sci. Technol. 22, 1052 (2006).CrossRefGoogle Scholar
80.Ferrie, E., Buffière, J.-Y., Ludwig, W., Int. J. Fatigue 27, 1215 (2005).CrossRefGoogle Scholar
81.Ferrie, E., PhD thesis, Institut National des Sciences Appliquées de Lyon (INSA Lyon), Lyon, France, 2006; http://csidoc.insa-lyon.fr/these/pont.php?id=ferrie.Google Scholar
82.Knott, J.F., Fundamentals of Fracture Mechanics (Butterworths, London 1981).Google Scholar
83.Khor, K.H., Buffière, J.-Y., Ludwig, W., Sinclair, I., Scripta Mater. 55, 47 (2006).CrossRefGoogle Scholar
84.Poulsen, H.F., Three-Dimensional X-ray Diffraction Microscopy. Mapping Polycrystals and Their Dynamics (Springer Tracts in Modern Physics, Vol. 205, Springer, Berlin, 2004).CrossRefGoogle Scholar
85.Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z., Nature 415, 887 (2002).CrossRefGoogle Scholar
86.Ice, G.E., Larson, B.C., Yang, W., Budai, J.D., Tischler, J.Z., Pang, J.W.L., Barabash, R.I., Liu, W., J. Synchrotron Radiat. 12, 155 (2005).CrossRefGoogle Scholar
87.Ludwig, W., Schmidt, S., Lauridsen, E.M., Poulsen, H.F., J. Appl. Crystallogr., 41 302 (2008).CrossRefGoogle Scholar
88.Johnson, G., King, A., Gonzalves-Hoennicke, M., Ludwig, W., J. Appl. Crystallogr., 41, 310 (2008).CrossRefGoogle Scholar
89.Gordon, R., Bender, R., Herman, G.T., J. Theor. Biol. 29, 471 (1970).CrossRefGoogle Scholar
90.Caty, O., Maire, E., Bouchet, R.. Adv. Eng. Mater. 10, 179 (2008).CrossRefGoogle Scholar