Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T20:40:47.584Z Has data issue: false hasContentIssue false

In situ small-scale mechanical testing under extreme environments

Published online by Cambridge University Press:  11 June 2019

Afrooz Barnoush
Affiliation:
Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Norway; [email protected]
Peter Hosemann
Affiliation:
Nuclear Materials Group, Department of Nuclear Engineering, University of California, Berkeley, USA; [email protected]
Jon Molina-Aldareguia
Affiliation:
IMDEA Materials Institute, Spain; [email protected]
Jeffrey M. Wheeler
Affiliation:
Laboratory for Nanometallurgy, ETH Zürich, Switzerland; [email protected]
Get access

Abstract

The high precision offered by small-scale mechanical testing has allowed the relationships between mechanical behavior and specific microstructural features to be determined to an unprecedented degree. However, of most interest to scientists and engineers is often the behavior of materials under service conditions in an extreme environment, such as high/low temperatures, high strain rates, hydrogen atmosphere, or radiation. In this article, we detail progress made to adapt nanomechanical testing systems and techniques to observe materials behavior in situ in extreme environments.

Type
Advances in In situ Nanomechanical Testing
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

SciVerse Scopus, Elsevier B.V . (2019).Google Scholar
Wheeler, J.M., Armstrong, D.E.J., Heinz, W., Schwaiger, R., Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).CrossRefGoogle Scholar
Lee, S.-W., Jafary-Zadeh, M., Chen, D.Z., Zhang, Y.-W., Greer, J.R., Nano Lett . 15, 5673 (2015).CrossRefGoogle Scholar
Beake, B.D., Smith, J.F., Philos. Mag. A 82, 2179 (2002).CrossRefGoogle Scholar
Suzuki, T., Ohmura, T., Philos. Mag. A 74, 1073 (1996).CrossRefGoogle Scholar
Duan, Z.C., Hodge, A.M., JOM 61, 32 (2009).CrossRefGoogle Scholar
Trenkle, J.C., Packard, C.E., Schuh, C.A., Rev. Sci. Instrum. 81, 73901 (2010).CrossRefGoogle Scholar
Harris, A.J., Beake, B.D., Armstrong, D.E.J., Davies, M.I., Exp. Mech. 57, 1115 (2017).CrossRefGoogle Scholar
Gibson, J.S.K.-L., Schröders, S., Zehnder, C., Korte-Kerzel, S., Extreme Mech. Lett. 17, 43 (2017).CrossRefGoogle Scholar
Wheeler, J.M., Michler, J., Rev. Sci. Instrum. 84, 45103 (2013).CrossRefGoogle Scholar
Snel, J., Monclús, M.A., Castillo-Rodriguez, M., Mara, N., Beyerlein, I.J., Llorca, J., Molina-Aldareguia, J.M., JOM 69, 2214 (2017).CrossRefGoogle Scholar
Smolka, M., Motz, C., Detzel, T., Robl, W., Griesser, T., Rev. Sci. Instrum. 83, 064702 (2012).CrossRefGoogle Scholar
Prasitthipayong, A., Vachhani, S.J., Tumey, S.J., Minor, A.M., Hosemann, P., Acta Mater . 144, 896 (2018).CrossRefGoogle Scholar
Monclús, M.A., Molina-Aldareguia, J.M., in Handbook of Mechanics of Materials (Springer, 2018), https://dx.doi.org/10.1007/978–981–10–6855–3_55–1.Google Scholar
Rebelo de Figueiredo, M., Abad, M.D., Harris, A.J., Czettl, C., Mitterer, C., Hosemann, P., Thin Solid Films 578, 20 (2015).CrossRefGoogle Scholar
Everitt, N.M., Davies, M.I., Smith, J.F., Philos. Mag. 91, 1221 (2011).CrossRefGoogle Scholar
Wheeler, J.M., Michler, J., Rev. Sci. Instrum. 84, 101301 (2013).CrossRefGoogle Scholar
Monclús, M.A., Lotfian, S., Molina-Aldareguía, J.M., Int. J. Precis. Eng. Manuf. 15, 1513 (2014).CrossRefGoogle Scholar
Dalla Torre, F., Van Swygenhoven, H., Victoria, M., Acta Mater . 50, 3957 (2002).CrossRefGoogle Scholar
Ramesh, K.T., in Springer Handbook of Experimental Solid Mechanics, Sharpe, W.N., Ed. (Springer US, Boston, MA, 2008), pp. 929960, https://doi.org/10.1007/978–0-387–30877–7_33.CrossRefGoogle Scholar
Tirupataiah, Y., Sundararajan, G., J. Mech. Phys. Solids 39, 243 (1991).CrossRefGoogle Scholar
Klopp, R.W., Clifton, R.J., Shawki, T.G., Mech. Mater. 4, 375 (1985).CrossRefGoogle Scholar
Cheng, Y.T., Cheng, C.M., Mater. Sci. Eng. R 44, 91 (2004).CrossRefGoogle Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., Suresh, S., Acta Mater . 51, 5159 (2003).CrossRefGoogle Scholar
Maier, V., Mueller, J., Backes, B., Höppel, H.W., Göken, M., J. Mater. Res. 26, 1421 (2011).CrossRefGoogle Scholar
Constantinides, G., Tweedie, C.A., Savva, N., Smith, J.F., Vliet, K.J., Exp. Mech. 49, 511 (2008).CrossRefGoogle Scholar
Zehnder, C., Peltzer, J.-N., Gibson, J.S.K.L., Korte-Kerzel, S., Mater. Des. 151, 17 (2018).CrossRefGoogle Scholar
Sudharshan Phani, P., Oliver, W.C., Materials (Basel) 10, 663 (2017).CrossRefGoogle Scholar
Guillonneau, G., Mieszala, M., Wehrs, J., Schwiedrzik, J., Grop, S., Frey, D., Philippe, L., Breguet, J.-M., Michler, J., Wheeler, J.M., Mater. Des. 148, 39 (2018).CrossRefGoogle Scholar
Hassani-Gangaraj, M., Veysset, D., Nelson, K.A., Schuh, C.A., Scr. Mater. 145, 9 (2018).CrossRefGoogle Scholar
Somekawa, H., Schuh, C.A., J. Mater. Res. 27, 1295 (2012).CrossRefGoogle Scholar
Iannuzzi, M., Barnoush, A., Johnsen, R., npj Mater. Degrad. 1, 2 (2017).CrossRefGoogle Scholar
Tal-Gutelmacher, E., Gemma, R., Volkert, C.A., Kirchheim, R., Scr. Mater. 63, 1032 (2010).CrossRefGoogle Scholar
Nibur, K., Bahr, D., Somerday, B., Acta Mater . 54, 2677 (2006).CrossRefGoogle Scholar
Wheeler, J.M., Clyne, T.W., Int. J. Hydrogen Energy 37 (2012), doi:10.1016/j.ijhydene.2012.07.054.CrossRefGoogle Scholar
Hajilou, T., Hope, M.S.B., Zavieh, A.H., Kheradmand, N., Johnsen, R., Barnoush, A., Int. J. Hydrogen Energy 43, 12516 (2018).CrossRefGoogle Scholar
Wang, D., Lu, X., Deng, Y., Guo, X., Barnoush, A., Acta Mater . 166, 618 (2019).CrossRefGoogle Scholar
Kim, J., Tasan, C.C., Int. J. Hydrogen Energy 44, 6333 (2019).CrossRefGoogle Scholar
Tomatsu, K., Miyata, K., Omura, T., ISIJ Int . 56 (2016), doi:10.2355/isijinternational.ISIJINT-2015–289.Google Scholar
Barnoush, A., Vehoff, H., Acta Mater . 58 (2010), doi:10.1016/j.actamat.2010.05.057.CrossRefGoogle Scholar
Barnoush, A., Dake, J., Kheradmand, N., Vehoff, H., Intermetallics 18 (2010), doi:10.1016/j.intermet.2010.01.001.CrossRefGoogle Scholar
Hajilou, T., Deng, Y., Kheradmand, N., Barnoush, A., Philos. Trans. R. Soc. A 375 (2017), doi:10.1098/rsta.2016.0410.CrossRefGoogle Scholar
Takahashi, Y., Kondo, H., Asano, R., Arai, S., Higuchi, K., Yamamoto, Y., Muto, S., Tanaka, N., Mater. Sci. Eng. A 661, 211 (2016).CrossRefGoogle Scholar
Wan, D., Deng, Y., Barnoush, A., Scr. Mater. 151, 24 (2018).CrossRefGoogle Scholar
Deng, Y., Barnoush, A., Acta Mater . 142, 236 (2018).CrossRefGoogle Scholar
Rogne, B.R.S., Kheradmand, N., Deng, Y., Barnoush, A., Acta Mater . 144 (2018), doi:10.1016/j.actamat.2017.10.037.CrossRefGoogle Scholar
Zinkle, S.J., Was, G.S., Acta Mater . 61, 735 (2013).CrossRefGoogle Scholar
Mansur, L.K., Rowcliffe, A.F., Nanstad, R.K., Zinkle, S.J., Corwin, W.R., Stoller, R.E., J. Nuc. Mater. 329, 166 (2004).CrossRefGoogle Scholar
Hosemann, P., Scr. Mater. 143, 161 (2018).CrossRefGoogle Scholar
Hardie, C.D., Roberts, S.G., J. Nucl. Mater. 433, 174 (2013).CrossRefGoogle Scholar
Takayama, Y., Kasada, R., Sakamoto, Y., Yabuuchi, K., Kimura, A., Ando, M., Hamaguchi, D., Tanigawa, H., J. Nuc. Mater. 442, S23 (2013).CrossRefGoogle Scholar
Heintze, C., Bergner, F., Hernández-Mayoral, M., J. Nucl. Mater. 417, 980 (2011).CrossRefGoogle Scholar
Mao, K.S., Sun, C., Huang, Y., Shiau, C.-H., Garner, F.A., Freyer, P.D., P Wharry, J., Materialia 5 , 100208 (2019).CrossRefGoogle Scholar
Shin, C., Jin, H.-H., Sung, H., Kim, D.-J., Choi, Y.S., Oh, K., Exp. Mech. 53, 687 (2013).CrossRefGoogle Scholar
Reichardt, A., Lupinacci, A., Frazer, D., Bailey, N., Vo, H., Howard, C., Jiao, Z., Minor, A.M., Chou, P., Hosemann, P., J. Nuc. Mater. 486, 323 (2017).CrossRefGoogle Scholar
Pouchon, M.A., Chen, J., Ghisleni, R., Michler, J., Hoffelner, W., Exp. Mech. 50, 79 (2010).CrossRefGoogle Scholar
Reichardt, A., Ionescu, M., Davis, J., Edwards, L., Harrison, R.P., Hosemann, P., Bhattacharyya, D., Acta Mater . 100, 147 (2015).CrossRefGoogle Scholar
Miura, T., Fujii, K., Fukuya, K., J. Nucl. Mater. 457, 279 (2015).CrossRefGoogle Scholar
Ding, M.-S., Tian, L., Han, W.-Z., Li, J., Ma, E., Shan, Z.-W., Phys. Rev. Lett. 117, 215501 (2016).CrossRefGoogle Scholar
Saleh, M., Xu, A., Hurt, C., Ionescu, M., Daniels, J., Munroe, P., Edwards, L., Bhattacharyya, D., Int. J. Plast. 112, 242 (2019).CrossRefGoogle Scholar
Krumwiede, D.L., Yamamoto, T., Saleh, T.A., Maloy, S.A., Odette, G.R., Hosemann, P., J. Nucl. Mater. 504, 135 (2018).CrossRefGoogle Scholar
Pathak, S., Kalidindi, S.R., Weaver, J.S., Wang, Y., Doerner, R.P., Mara, N.A., Sci. Rep. 7, 11918 (2017).CrossRefGoogle Scholar
Özerinç, S., Averback, R.S., King, W.P., J. Nucl. Mater. 451, 104 (2014).CrossRefGoogle Scholar
Reichardt, A., Lupinacci, A., Frazer, D., Bailey, N., Vo, H., Howard, C., Jiao, Z., Minor, A.M., Chou, P., Hosemann, P., J. Nucl. Mater. 486, 323 (2017).CrossRefGoogle Scholar
Vo, H.T., Reichardt, A., Frazer, D., Bailey, N., Chou, P., Hosemann, P., J. Nucl. Mater. 493, 336 (2017).CrossRefGoogle Scholar
Armstrong, D.E.J., Hardie, C.D., Gibson, J.S.K.L., Bushby, A.J., Edmondson, P.D., Roberts, S.G., J. Nuc. Mater. 462, 374 (2015).CrossRefGoogle Scholar