Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T13:18:48.112Z Has data issue: false hasContentIssue false

Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The remarkable electrical and thermal conductivities of isolated carbon nanotubes have spurred worldwide interest in using nanotubes to enhance polymer properties. Electrical conductivity in nanotube/polymer composites is well described by percolation, where the presence of an interconnected nanotube network corresponds to a dramatic increase in electrical conductivity ranging from 10−5 S/cm to 1 S/cm. Given the high aspect ratios and small diameters of carbon nanotubes, percolation thresholds are often reported below 1 wt% although nanotube dispersion and alignment strongly influence this value. Increases in thermal conductivity are modest (∼3 times) because the inter facial thermal re sis tance between nanotubes is considerable and the thermal conductivity of nanotubes is only 104 greater than the polymer, which forces the matrix to contribute more toward the composite thermal conductivity, as compared to the contrast in electrical conductivity, >1014. The nanotube network is also valuable for improving flame-retardant efficiency by producing a protective nanotube residue. In this ar ticle, we highlight published research results that elucidate fundamental structure–property relationships pertaining to electrical, thermal, and/or flammability properties in numerous nanotube-containing polymer composites, so that specific applications can be targeted for future commercial success.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.de Heer, W.A., MRS Bull. 29 (4), 281 (2004).CrossRefGoogle Scholar
2.Moniruzzaman, M., Winey, K.I., Macromolecules 39 5194 (2006).CrossRefGoogle Scholar
3.Cooper, C.A., Young, R.J., Halsall, M., Compos. Part A 32, 401 (2001).CrossRefGoogle Scholar
4.Gao, G., Cagin, T., Goddard, W.A., Nanotechnology 9, 184 (1998).CrossRefGoogle Scholar
5.Uchida, T., Kumar, S.J., J. Appl. Polym. Sci. 98, 985 (2005).CrossRefGoogle Scholar
6.McEuen, P.L. et al., Phys. Rev. Lett. 83, 5098 (1999).CrossRefGoogle Scholar
7.Berber, S., Kwon, Y.K., Tomanek, D., Phys. Rev. Lett. 84, 4613 (2000).CrossRefGoogle Scholar
8.Coleman, J.N., Khan, U., Gun'ko, Y.K.Adv. Mater. 18, 689 (2006).CrossRefGoogle Scholar
9.Bryning, M.B., Islam, M.F., Kikkawa, J.M., Yodh, A.G., Adv. Mater. 17, 1186 (2005).CrossRefGoogle Scholar
10.Sandler, J.K.W. et al., Polymer 44, 5893 (2003).CrossRefGoogle Scholar
11.Benoit, J.-M. et al., Synth. Met. 121, 1215 (2001).CrossRefGoogle Scholar
12.Ramasubramaniam, R., Chen, J., Liu, H., Appl. Phys. Lett. 83, 2928 (2003).CrossRefGoogle Scholar
13.Dyke, C.A., Tour, J.M., J. Phys. Chem. A 108, 11151 (2004).CrossRefGoogle Scholar
14.Du, F. et al., Macromolecules 37, 9048 (2004).CrossRefGoogle Scholar
15.Bai, J.B., Allaoui, A., Compos. Part A 34, 689 (2003).CrossRefGoogle Scholar
16.Valentini, L., Armentano, I., Puglia, D., Kenny, J.M., Carbon 42, 323 (2004).CrossRefGoogle Scholar
17.Tamburri, E. et al., Carbon 43, 1213 (2005).CrossRefGoogle Scholar
18.Hobbie, E.K., Obrzut, J., Kharchenko, S.B., Grulke, E.A., J. Chem. Phys. 125, 044712 (2006).CrossRefGoogle Scholar
19.Haggenmueller, R. et al., Chem. Phys. Lett. 330, 219 (2000).CrossRefGoogle Scholar
20.Xu, J. et al., J. Phys. Chem. B 110, 12289 (2006).CrossRefGoogle Scholar
21.Fischer, J.E. et al., J. Appl. Phys. 93, 2157 (2003).CrossRefGoogle Scholar
22.Lee, R.S. et al., Nature 388, 255 (1997).CrossRefGoogle Scholar
23.Du, F., Fischer, J.E., Winey, K.I., Phys. Rev. B 72, 121404 (2005).CrossRefGoogle Scholar
24.Coleman, J.N. et al., Appl. Phys. Lett. 82, 1682 (2003).CrossRefGoogle Scholar
25.Wang, Z. et al., Compos. Part A 35, 1225 (2004).CrossRefGoogle Scholar
26.Grunlan, J.C., Mehrabi, A.R., Bannon, M.V., Bahr, J.L., Adv. Mater. 16, 150 (2004).CrossRefGoogle Scholar
27.Zhong, H.L., Lukes, J.R., Phys. Rev. B 74, 125403 (2006).CrossRefGoogle Scholar
28.Yan, X.H., Xiao, Y., Li, Z.M., J. Appl. Phys. 99, 124305 (2006).CrossRefGoogle Scholar
29.Huxtable, S.T. et al., Nature Mater. 2, 731 (2003).CrossRefGoogle Scholar
30.Hone, J. et al., Appl. Phys. Lett. 77, 666 (2000).CrossRefGoogle Scholar
31.Gojny, F.H. et al., Polymer 47, 2036 (2006).CrossRefGoogle Scholar
32.Shenogin, S. et al., Appl. Phys. Lett. 85, 2229 (2004).CrossRefGoogle Scholar
33.Liu, C.H., Fan, S.S., Appl. Phys. Lett. 86, 123106 (2005).CrossRefGoogle Scholar
34.Huang, H., Liu, C., Wu, Y., Fan, S., Adv. Mater. 17, 1652 (2005).CrossRefGoogle Scholar
35.Biercuk, M.J. et al., Appl. Phys. Lett. 80, 2767 (2002).CrossRefGoogle Scholar
36.Choi, E.S. et al., Appl. Phys. Lett. 94, 6034 (2003).Google Scholar
37.Du, F. et al., J. Polym. Sci. B 44, 1513 (2006).CrossRefGoogle Scholar
38.Kashiwagi, T. et al., Polymer 45, 4227 (2004).CrossRefGoogle Scholar
39.Kashiwagi, T. et al., Polymer 46, 471 (2005).CrossRefGoogle Scholar
40.Kashiwagi, T. et al., Nature Mater. 4, 928 (2005).CrossRefGoogle Scholar
41.Ericson, L.M. et al., Science 305, 1447 (2004).CrossRefGoogle Scholar
42.Li, Y.L., Kinloch, I.A., Windle, A.H., Science 304, 276 (2004).CrossRefGoogle Scholar
43.Zhang, M., Atkinson, K.R., Baughman, R.H., Science 306, 1358 (2004).CrossRefGoogle Scholar